

# Contents

| Steel                              | Material No.  | Name              | Page    |
|------------------------------------|---------------|-------------------|---------|
| ES ULW 65                          | 1.1730        | C 45 U            | 7       |
| ES 50 S                            | 1.2080        | X 210 Cr 12       | 8       |
| ES 120 K                           | 1.2083        | X 40 Cr 14        | 9       |
| ES 120 K ESR                       | 1.2083 ESR    | X 40 Cr 14        | 10      |
| ES Antikor S                       | 1.2085 mod.   | X 33 CrS 16       | 11      |
| ES Antikor SL                      | Special alloy | Special alloy     | 12      |
| ES 100 K                           | 1.2162        | 21 MnCr 5         | 13      |
| ES Aktuell                         | 1.2311        | 40 CrMnMo 7       | 14      |
| ES Aktuell S                       | 1.2312        | 40 CrMnMoS 8-6    | 15      |
| ES Antikor                         | 1.2316        | X 38 CrMo 16      | 16      |
| ES 235 W                           | 1.2343        | X 37 CrMoV 5-1    | 17      |
| ES Maximum 500                     | 1.2343 ESR    | X 37 CrMoV 5-1    | 18      |
| ES 245 W                           | 1.2344        | X 40 CrMoV 5-1    | 19      |
| ES 245 W ESR                       | 1.2344 ESR    | X 40 CrMoV 5-1    | 20      |
| ES 65 S                            | 1.2363        | X 100 CrMoV 5     | 21      |
| ES 265 W                           | 1.2367        | X 38 CrMoV 5-3    | 22      |
| ES 265 W ESR                       | 1.2367 ESR    | X 38 CrMoV 5-3    | 23      |
| ES 70 S                            | 1.2379        | X 153 CrMoV 12    | 24      |
| ES 50 SW                           | 1.2436        | X 210 CrW 12      | 25      |
| ES 370 G                           | 1.2714        | 55 NiCrMoV 7      | 26      |
| ES Aktuell 1000                    | 1.2738        | 40 CrMnNiMo 8-6-4 | 27      |
| ES Aktuell 1200                    | Special alloy | Special alloy     | 28      |
| ES 106 K                           | 1.2764        | X 19 NiCrMo 4     | 29      |
| ES 275 K                           | 1.2767        | 45 NiCrMo 16      | 30      |
| ES 275 K ESR                       | 1.2767 ESR    | 45 NiCrMo 16      | 31      |
| ES 60 S                            | 1.2842        | 90 MnCrV 8        | 32      |
| ES 4122                            | 1.4122 mod.   | X 39 CrMo 17-1    | 33      |
| ES LB 100                          | Special alloy | Special alloy     | 34      |
| ES LB 100 S                        | Special alloy | Special alloy     | 35      |
| Product types and machining allowa | nces          |                   | 6       |
| Quality and production standards   |               |                   | 36      |
| Heat treatment                     |               |                   | 37 - 39 |
| Welding                            |               |                   | 40 - 41 |
| Polishing                          |               |                   | 42      |
| Surface texturing                  |               |                   | 43      |
| Plastic mould steels               |               |                   | 44      |
| Cold work steels                   |               |                   | 47      |
| Hot work steels                    |               |                   | 52      |
| Hardness conversion table          |               |                   | 62      |

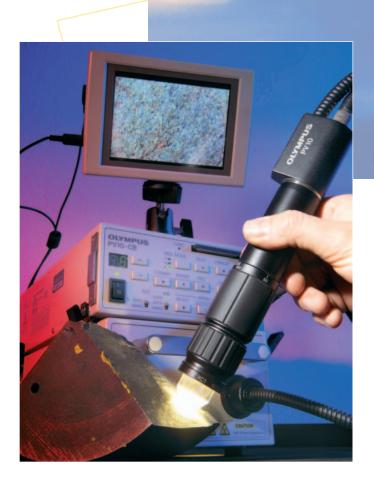
# Perfect service and rapid delivery time -

We extend our advantage to you

Achieving targets together – we are your professional partners in the tool steel sector. Our employees, an exceptionally large warehouse capacity and high-performance machinery form the basis of your success.






Leading from the outset

Since the company was founded in 1953, EschmannStahl has grown steadily and now provides comprehensive services in Germany and abroad – from supplying steel as raw material to machining and graining of completed moulds by our subsidiary EschmannTextures.

# Absolute confidence in constructional design is deci

We leave nothing to chance, enabling you to put yo

Reliability in all processes: our approved management systems document our information-orientated organisation ensuring quality, environmental protection and occupational safety.



Optimal material performance results from a precise analysis of customer requirements, comprehensive consultation regarding application and high product and manufacturing quality.



Approved safety

# sive factor -

ur heart and soul into your tasks

In our laboratory steel products undergo extensive metallurgical tests and analyses on a daily basis. Furthermore, we improve existing tool steels and manufacture new special products to meet increasing material requirements presenting additional state-of-the-art properties.

# Product types and machining allowances

### How we supply and machine our steels:

In addition to raw steel material EschmannStahl also supplies machined tool steel, which can result in enormous practical advantages.

Our product groups always represent the state of the art in terms of technology and application.

The tool steels we supply are in accordance with DIN EN ISO 4957. The steels can be forged or rolled and/or premachined.

### Black material

Certain machining allowances are required to be sure that mill scale and decarburisation are properly removed.

The tolerance ranges comply with the standards for

- steel forgings to DIN 7527
- hot rolled round steel bars to DIN EN 10060
- hot rolled square bars to DIN 1014
- hot rolled flat steel bars to DIN EN 10058
- hot rolled wide flats to DIN 59200
- hot rolled steel plates EN 10029

The following machining allowances can be used as the basis for black material (extract from DIN 7527, page 6).

### Machined tool steels

Machined tool steels guarantee you clean surfaces and reduced tolerances. Savings of between 7 - 10% by weight can be made, depending on the particular dimensions.

We supply machined tool steel in bar and plate form, as precision flat and square steel and as rough-ground tool steel.

Our particular strength is the manufacture of premachined tools, moulds and construction elements, which we can supply to suit your particular requirements on the basis of drawings or specifications.

| Finish | ed size | C   | ross section          |
|--------|---------|-----|-----------------------|
| f1 (   | or f2   |     | Allowance             |
| over   | to      | 2z  | Permissible variation |
| 16     | 25      | 2.6 | ± 0.6                 |
| 25     | 40      | 3   | ± 0.7                 |
| 40     | 63      | 4   | ± 0.9                 |
| 63     | 80      | 5   | ± 1.1                 |
| 80     | 100     | 6   | ± 1.3                 |
| 100    | 125     | 7   | ± 1.5                 |
| 125    | 160     | 9   | ± 1.8                 |
| 160    | 200     | 11  | ± 2.2                 |
| 200    | 250     | 13  | ± 2.6                 |
| 250    | 315     | 16  | ± 3.2                 |
| 315    | 400     | 19  | ± 4.0                 |
| 400    | 500     | 24  | ± 4.9                 |
| 500    | 630     | 30  | ± 6.0                 |
| 630    | 800     | 37  | ± 7.4                 |
| 800    | 1000    | 46  | ± 9.3                 |



# ES ULW 65

### *Name:* C 45 U

*Material No.:* 1.1730

*Typical analysis in %:* C Si Mn 0.45 0.3 0.7

# Heat treatment data:

|                         | Temperature         | Duration                   | Cooling    |
|-------------------------|---------------------|----------------------------|------------|
| Soft annealing          | 680 - 710 °C        | 2 - 5 h                    | furnace    |
| Stress-relief annealing | 600 - 650 °C        | min.4h                     | furnace    |
| Hardening               | 800 - 830 °C        | Group I                    | water, oil |
| Tempering               | 160 - 300 °C        | min.2 h                    | still air  |
|                         | see tempering curve | depending on cross section |            |

As-supplied condition:

(approx. 650 N/mm<sup>2</sup>)

Unalloyed tool steel, good

machinability, shallow depth case

Characteristics:

hardening steel


Annealed to a hardness of about 190 HB

# Physical characteristics:

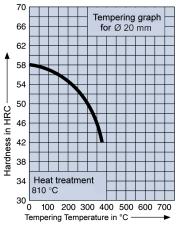
| Coefficient of therma | l expansi | on: betv | veen 20 ° | 'C and: |      |        |
|-----------------------|-----------|----------|-----------|---------|------|--------|
| 10 <sup>-6</sup> x m  | 100       | 200      | 300       | 400     | 500  | 600 °C |
| m x K                 | 11.0      | 12.0     | 13.0      | 13.5    | 14.0 | 14.2   |
| Thermal conductivity: | W         |          | 20 °C     |         |      |        |
|                       | m x K     |          | 50        |         |      |        |

Normal working hardness: 650 N/mm<sup>2</sup>, generally used in the as-supplied condition

Continuous time-temperature-transformation diagram



### General fields of application:


Mould frames, components for plastic moulds, blow and foaming moulds with low polishability requirements, unhardened components in moulds, tools, jigs and fixtures

# Special note:

Shallow depth case hardening steel

Through-hardening diameter: 15 mm (water)

Hardening depth for 🛛 30 mm: 3.5 mm



# ES 50 S

## *Name:* X 210 Cr 12

*Material No.:* 1.2080

*Typical analysis in %:* C Cr 2.1 12.0

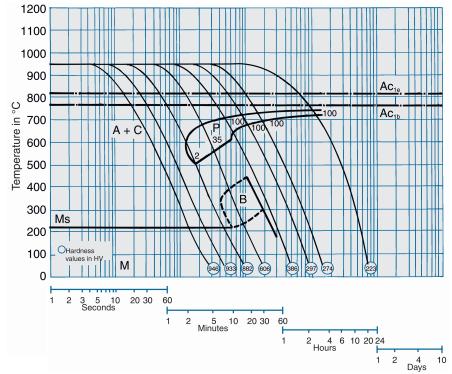
# As-supplied condition:

Soft-annealed to max. 248 HB (840 N/mm<sup>2</sup>)

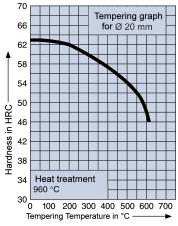
### Characteristics:

Ledeburitic 12% chromium steel with good dimensional stability and high wear resistance, very good compressive strength combined with adequate toughness.

# Heat treatment data:


|                         | Temperature         | Duration                   | Cooling        |
|-------------------------|---------------------|----------------------------|----------------|
| Soft annealing          | 800 - 840 °C        | 2 - 5 h                    | furnace        |
| Stress-relief annealing | 600 - 650 °C        |                            |                |
| Hardening               | 940 - 970 °C        | Group III                  | oil, WB 500° C |
| Tempering               | 200 - 350 °C        | min.2h                     | still air      |
|                         | see tempering curve | depending on cross section |                |

# Physical characteristics:


| Coefficient of thermo      | al expan | sion: betw | veen 20 | °C and: |        |      |        |
|----------------------------|----------|------------|---------|---------|--------|------|--------|
| <u>10<sup>-6</sup> x m</u> | 100      | 200        | 300     | 400     | 500    | 600  | 700 °C |
| m x K                      | 10.8     | 11.7       | 12.2    | 12.6    | 12.8   | 13.1 | 13.3   |
| Thermal conductivity       | :        | w          | 20      | 350     | 700 °C |      |        |
|                            |          | m x K      | 16.7    | 20.5    | 24.2   |      |        |

# Normal working hardness: 58 - 62 HRC

Continuous time-temperature-transformation diagram



# Tempering curve



General fields of application:

Cutting tools, shearing knives, broaches, woodworking tools, profile and flanging rollers, thread rolling tools, deep drawing and pressing tools, drawing cones, guide rails, extrusion dies, sand blast nozzles, rotary shear knives

### Special note:

Not suitable for larger wire sections; for this we recommend ES 70 S, Mat. No. 1.2379.

Through-hardening diameter for 64 HRC: 50 mm 62 HRC: 80 mm 60 HRC: 90 mm 58 HRC: 120 mm

Core hardness at ø 300 mm: 44 HRC

Cooling: oil

# ES 120 K

### *Name:* X 40 Cr 14

Material No.: 1.2083

*Typical analysis in %:* C Cr 0.4 14.0

### As-supplied condition:

Soft-annealed to max. 241 HB (810 N/mm<sup>2</sup>)

### Characteristics:

Corrosion-resistant mould steel, highest cleanliness and good polishability, good machinability, low distortion throughhardening steel, high hardenability, high wear resistance

### General fields of application:

Tools for processing corrosive plastics

#### Special note:

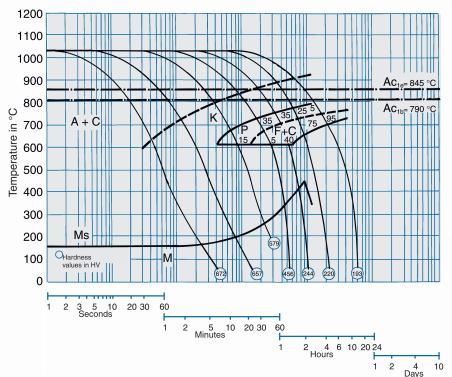
Best corrosion resistance is obtained in the hardened and low tempered condition with a polished surface.

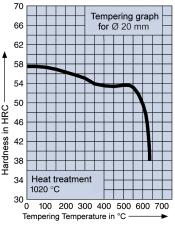
Also available in EST and ESR grades.

# If grained or polished only ES 120 K EST should be used.

For the highest polishability requirements we recommend ES 120 K in ESR grade.

| Н | le | а | t | tr | ea | at | m | er | It | d | а | ta | • |  |
|---|----|---|---|----|----|----|---|----|----|---|---|----|---|--|
|---|----|---|---|----|----|----|---|----|----|---|---|----|---|--|


|                         | Temperature                         | Duration                 | Cooling                    |
|-------------------------|-------------------------------------|--------------------------|----------------------------|
| Soft annealing          | 760 - 800 °C                        | 2 - 5 h                  | furnace                    |
| Stress-relief annealing | 600 - 650 °C                        | min.4h                   | furnace                    |
| Hardening               | 1000 - 1050 °C                      | Group II                 | oil, air,<br>WB 500 °C     |
| Tempering               | 250 - 570 °C<br>see tempering curve | min. 2 h<br>depending on | still air<br>cross section |


# Physical characteristics:

| Coefficient of thermal expansion: between 20 °C and: |       |      |      |        |      |        |  |  |  |
|------------------------------------------------------|-------|------|------|--------|------|--------|--|--|--|
| <u>10-6 x m</u>                                      | 100   | 200  | 300  | 400 °C | _    |        |  |  |  |
| m x K                                                | 10.5  | 11.0 | 11.6 | 11.9   |      |        |  |  |  |
| Thermal conductivity:                                | W     |      | 20   | 200    | 300  | 400 °C |  |  |  |
|                                                      | m x K |      | 21.0 | 22.0   | 23.8 | 24.7   |  |  |  |

Normal working hardness: 50 - 55 HRC

Continuous time-temperature-transformation diagram





# **ES 120 K ESR**

Name: X 40 Cr 14

Material No.: 1.2083

Typical analysis in %: С Cr 0.4 14.0

### As-supplied condition:

Soft-annealed to max. 241 HB (810 N/mm<sup>2</sup>)

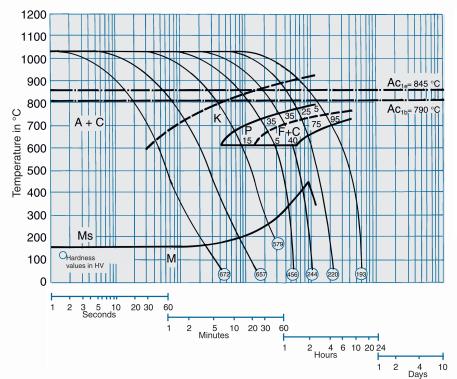
## Characteristics:

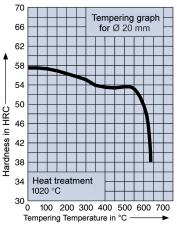
Corrosion-resistant mould steel, with highest cleanliness and very good polishability, good machinability, low distortion through-hardening steel, high hardenability, high wear resistance.

# General fields of application:

Tools for use on corrosive plastics.

#### Special note:


Best corrosion resistance is obtained in the hardened and low tempered condition with a polished surface.


# Heat treatment data:

|                                                      | Temperature                         | Duration                 | Cooling                      |  |  |  |  |  |
|------------------------------------------------------|-------------------------------------|--------------------------|------------------------------|--|--|--|--|--|
| Soft annealing                                       | 760 - 800 °C                        | 2 - 5 h                  | furnace                      |  |  |  |  |  |
| Stress-relief annealing                              | 600 - 650 °C                        | min. 4 h                 | furnace                      |  |  |  |  |  |
| Hardening                                            | 1000 - 1050 °C                      | Group II                 | oil, air<br>WB 500° C        |  |  |  |  |  |
| Tempering                                            | 250 - 570 °C<br>see tempering curve | min. 2 h<br>depending or | still air<br>I cross section |  |  |  |  |  |
| Physical characteristics:                            |                                     |                          |                              |  |  |  |  |  |
| Coefficient of thermal expansion: between 20 °C and: |                                     |                          |                              |  |  |  |  |  |

| coefficient of therma | i expansio | n: betw | leen 20 | C anu: |          |        |
|-----------------------|------------|---------|---------|--------|----------|--------|
| <u>10-6 x m</u>       | 100        | 200     | 300     | 400 °( | <u>:</u> |        |
| m x K                 | 10.5       | 11.0    | 11.6    | 11.9   |          |        |
| Thermal conductivity: | W          |         | 20      | 200    | 300      | 400 °C |
|                       | m x K      | _ \     | 21.0    | 22.0   | 23.8     | 24.7   |

Continuous time-temperature-transformation diagram





Normal working hardness: 50 - 55 HRC

# ES Antikor S

### *Name:* X 33 CrS 16

*Material No.:* 1.2085 mod.

Typical analysis in %:

C Si Mn Cr S 0.3 0.5 1.0 16.0 0.1

# Heat treatment data:

|                         | Temperature | Duration | Cooling |
|-------------------------|-------------|----------|---------|
| Stress-relief annealing | max. 480 °C | min. 4 h | furnace |
|                         |             |          |         |

As-supplied condition:

Corrosion-resistant steel with

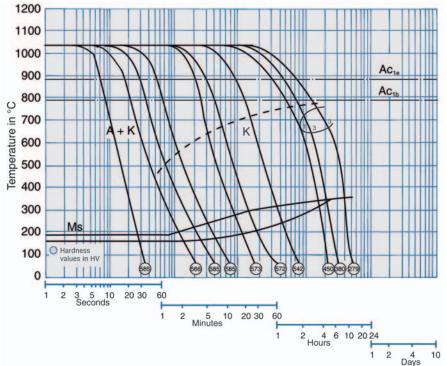
compared to material 1.2316

considerably better machinability

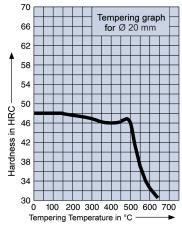
(950-1100 N/mm<sup>2</sup>)

Characteristics:

Quenched and tempered to 280-325 HB


We recommend stress-relief annealing for more than 30% machining before finish machining

# Physical characteristics:


| Coefficient of therma | l expansi | on: betv | veen 20 | °C and: |        |      |        |
|-----------------------|-----------|----------|---------|---------|--------|------|--------|
| 10 <sup>-6</sup> x m  | 100       | 200      | 300     | 400     | 500    | 600  | 700 °C |
| m x K                 | 12.2      | 12.9     | 13.5    | 13.9    | 14.2   | 14.5 | 14.8   |
| Thermal conductivity: | W         |          | 20      | 350     | 700 °C |      |        |
|                       | m x K     |          | 39.5    | 36.5    | 33.5   |      |        |

Normal working hardness: Used in the as-supplied condition

Continuous time-temperature-transformation diagram



## Tempering curve



## General fields of application:

Mould frames, tools for processing corrosive plastics. This steel is recommended where the main requirement is for machinability with good corrosion-resistance.

## Special note:

Normally ES Antikor S is used in the as-supplied condition. Further heat treatment is not recommended. ES Antikor S is suitable for technical polishing only. For other types of polished surfaces we recommend ES Antikor in EST grade.

# ES Antikor SL

### Name:

# Special alloy

Typical analysis in %:

C Mn S Cr 0.04 1.2 0.12 13.0 + trace elements

### As-supplied condition:

Quenched and tempered to a hardness of 280-325 HB (approx. 950-1100 N/mm<sup>2</sup>)

### Characteristics:

This newly developed special material is a further development of the well-known steel ES Antikor S.

## The special chemical composition and manufacturing variants of this new and innovative tool steel provides it with the following special properties:

- excellent machinability
- uniform hardness throughout the cross section
- adequately high corrosion resistance
- high dimensional stability
- high toughness
- highest weldability
- high thermal conductivity

### General fields of application:

Mould frames and tools for processing aggressive plastics or for use with highly corrosive media.

# Stress-relief annealing: 480 °C min. 2 h at core temperature

Heat treatment data:

# Physical characteristics:

| Coefficient of the   | ermal e | xpans | ion: be | etween 20 | 0°C and: |        |
|----------------------|---------|-------|---------|-----------|----------|--------|
| 10⁻ <sup>6</sup> x m | 1       | 00    | 200     | 300       | 400      | 500 °C |
| m x K                | 1       | 0.0   | 10.6    | 11.0      | 11.3     | 11.6   |
| Thermal conduct      | ivity:  | W     | _ \     | 20        | 150      | 350 °C |
|                      |         | m x l | <       | 21.6      | 23.2     | 24.9   |
|                      |         |       |         |           |          |        |



# ES 100 K

## *Name:* 21 MnCr 5

Material No.: 1.2162

*Typical analysis in %:* C Mn Cr 0.21 1.3 1.2

## Heat treatment data:

| A      |        | 1        | • • • • |
|--------|--------|----------|---------|
| AS-SU  | pplied | l condit | 10n:    |
| 715 JU | oplice | conunc   | 10      |

BG-annealed to maximum 210 HB (approx. 710 N/mm²)

### Characteristics:

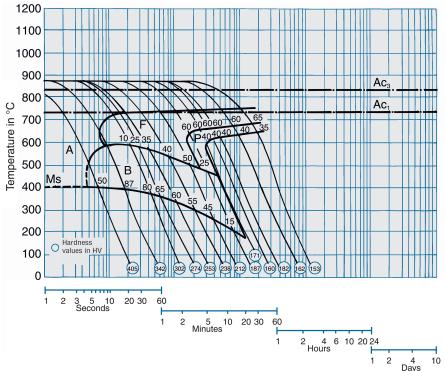
Standard case hardening steel, easily machined, good polishability, suitable for cold hobbing, high surface hardness with high core toughness can be achieved with appropriate heat treatment

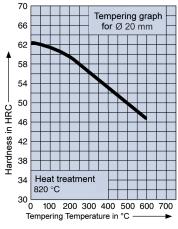
## General fields of application:

Tools for plastic processing (thermoplastic and thermosetting), pinions, gear wheels, gear racks, shafts etc.

### Special note:

Case hardening in powder at: 870 - 900 °C Case hardening in salt bath: 900 - 930 °C Intermediate annealing temperature: 630 - 650 °C


|                         | Temperature         | Duration                   | Cooling        |  |
|-------------------------|---------------------|----------------------------|----------------|--|
| Soft annealing          | 670 - 710 °C        | 2 - 5 h                    | furnace        |  |
| Stress-relief annealing | 600 - 650 °C        | min. 4 h                   | furnace        |  |
| Hardening               | 810 - 840 °C        | Group II                   | oil, WB 200 °C |  |
| Tempering               | 180 - 300 °C        | min. 2 h                   | still air      |  |
|                         | see tempering curve | depending on cross section |                |  |


# Physical characteristics:

| Coefficient of therma | l expansi | on: betv | veen 20 | °C and: |        |      |        |
|-----------------------|-----------|----------|---------|---------|--------|------|--------|
| <u>10⁻⁰ x m</u>       | 100       | 200      | 300     | 400     | 500    | 600  | 700 °C |
| m x K                 | 12.2      | 12.9     | 13.5    | 13.9    | 14.2   | 14.5 | 14.8   |
| Thermal conductivity: | W         |          | 20      | 350     | 700 °C | _    |        |
|                       | m x K     |          | 39.5    | 36.5    | 33.5   |      |        |

*Normal working hardness:* 58 - 61 HRC (after hardening, core strength approx. 1000 - 1200 N/mm<sup>2</sup>)

Continuous time-temperature-transformation diagram





# ES Aktuell

Name: 40 CrMnMo 7

Material No.: 1.2311

*Typical analysis in %:* C Mn Cr Mo 0.4 1.5 1.9 0.2

## Heat treatment data:

|                                                                                | Temperature | Duration | Cooling |  |  |  |
|--------------------------------------------------------------------------------|-------------|----------|---------|--|--|--|
| Stress-relief annealing                                                        | max. 480°C  | min. 4 h | furnace |  |  |  |
| We recommend stress-relief annealing for more than 30% machining before finish |             |          |         |  |  |  |

As-supplied condition:

Characteristics:

Quenched and tempered to a hardness

of 280 to 325 HB (950 - 1100 N/mm<sup>2</sup>)

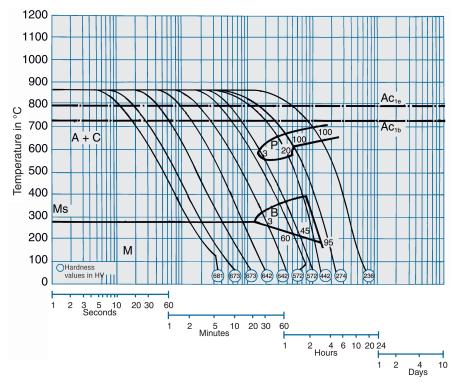
Quenched and tempered plastic mould

suitable for chromium plating, uniform

hardness throughout the cross section

up to a thickness of approx. 400 mm

steel, good polishability, nitridable,


machining.

# Physical characteristics:

| Coefficient of therma      | ıl expansio | n: betw | veen 20 | °C and: |       |      |        |
|----------------------------|-------------|---------|---------|---------|-------|------|--------|
| <u>10<sup>-6</sup> x m</u> | 100         | 200     | 300     | 400     | 500   | 600  | 700 °C |
| m x K                      | 11.1        | 12.9    | 13.4    | 13.8    | 14.2  | 14.6 | 14.9   |
|                            |             |         |         |         |       |      |        |
| Thermal conductivity.      | . W         | _ \     | 20      | 350     | 700°C |      |        |
|                            | m x K       |         | 34.5    | 33.5    | 32.0  |      |        |
|                            |             |         |         |         |       |      |        |

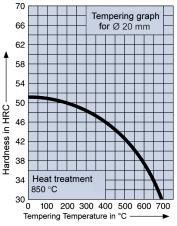
Normal working hardness: Used in the as-supplied condition

Continuous time-temperature-transformation diagram



### General fields of application:

Plastic moulds, mould frames for plastic and die casting moulds


### Special note:

Can also be supplied in EST grade with improved grain and polishability.

# If grained only ES Aktuell in EST grade should be used.

We recommend stress-relief annealing for more than 30% machining before finish machining.

For material cross sections over 400 mm we recommend ES Aktuell 1000 or ES Aktuell 1200 for their better through tempering.



# ES Aktuell S

# Name:

40 CrMnMo S 8-6

### Material No.: 1.2312

Typical analysis in %:

C Mn S Cr Mo 0.4 1.5 0.07 1.9 0.2

# Heat treatment data:

|                         | Temperature          | Duration           | Cooling          |   |
|-------------------------|----------------------|--------------------|------------------|---|
| Stress-relief annealing | max. 480°C           | min. 4 h           | furnace          |   |
| We recommand stress rel | iof appoaling for me | rothan 20% machini | na hoforo finich | - |

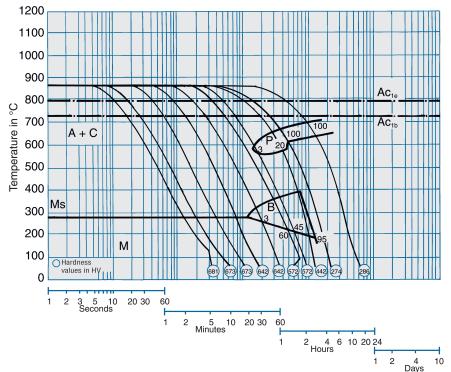
As-supplied condition:

The very best machinability, high compressive loads

Characteristics:

Quenched and tempered to a hardness

of 280 to 325 HB (950 - 1100 N/mm<sup>2</sup>)


We recommend stress-relief annealing for more than 30% machining before finish machining.

# Physical characteristics:

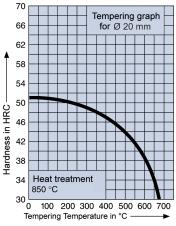
| Coefficient of therma | l expansi | on: betv | veen 20 | °C and: |        |      |        |
|-----------------------|-----------|----------|---------|---------|--------|------|--------|
| 10 <sup>-6</sup> x m  | 100       | 200      | 300     | 400     | 500    | 600  | 700 °C |
| m x K                 | 12.2      | 12.9     | 13.5    | 13.9    | 14.2   | 14.5 | 14.8   |
| Thermal conductivity: | W         |          | 20      | 350     | 700 °C |      |        |
|                       | m x K     |          | 39.5    | 36.5    | 33.5   |      |        |

Normal working hardness: Used in the as-supplied condition

Continuous time-temperature-transformation diagram



# General fields of application:


Plastic moulds, for which the main requirement is for machinability; mould frames and mould plates; mould frames for plastic and die casting moulds

# Special note:

ES Aktuell S can be nitrided to improve its wear resistance.

## ES Aktuell S is not suitable for graining or polishing. For this we recommend ES Aktuell EST, Mat.-No. 1.2311.

For material cross sections over 400 mm we recommend ES Aktuell 1000 or ES Aktuell 1200 for better full quenching and tempering.



# ES Antikor

*Name:* X 38 CrMo 16

Material No.: 1.2316

*Typical analysis in %:* C Cr Mo Ni 0.38 16.0 1.2 ≤ 1.0

## Heat treatment data:

|                                                                                | Temperature | Duration | Cooling |  |  |  |
|--------------------------------------------------------------------------------|-------------|----------|---------|--|--|--|
| Stress-relief annealing                                                        | max. 480 °C | min. 4 h | furnace |  |  |  |
| We recommend strong relief appealing for more than 20% machining before finish |             |          |         |  |  |  |

As-supplied condition:

(950 - 1100 N/mm<sup>2</sup>)

Corrosion resistant, polishable,

quenched and tempered mould steel

280 - 325 HB

Characteristics:

We recommend stress-relief annealing for more than 30% machining before finish machining

# Physical characteristics:

| Coefficient of therma | l expansio | n: bet | ween 20 | °C and: |          |
|-----------------------|------------|--------|---------|---------|----------|
| <u>10-6 x m</u>       | 100        | 200    | 300     | 400 °   | <u>c</u> |
| m x K                 | 10.5       | 11.0   | 11.0    | 12.0    |          |
| Thermal conductivity: | W          |        | 20      | 350     | 700 °C   |
|                       | m x K      |        | 17.2    | 21.0    | 24.7     |

Normal working hardness: Used in the as-supplied condition

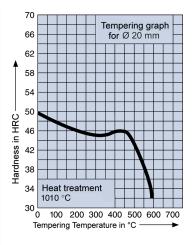
Continuous time-temperature-transformation diagram

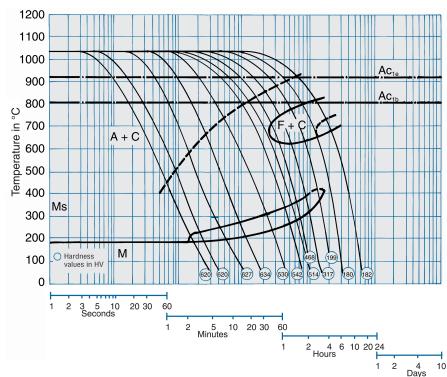
# General fields of application:

Tools for processing corrosive plastics

### Special note:

Highest corrosion resistance with polished surface.


Nitriding ES Antikor reduces its corrosion resistance.


Also available in EST and ESR grades.

If it is to be grained or polished only ES Antikor EST grade should be used.

We recommend ES Antikor for graining or technical polishing.

ES Antikor ESR should be used for higher quality polishing.





# ES 235 W

### Name:

X 37 CrMoV 5-1

Material No.: 1.2343

### Typical analysis in %:

C Si Cr Mo V 0.37 1.0 5.3 1.3 0.4

## Heat treatment data:

| Temperature              | Duration                                                         | Cooling                                                                                             |
|--------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| 800 - 860 °C             | 2 - 5 h                                                          | furnace                                                                                             |
| g 600 - 650 °C           | min. 4 h                                                         | furnace                                                                                             |
| 1020 - 1060 °C           | Group II                                                         | oil, air,                                                                                           |
|                          |                                                                  | WB 500 °C                                                                                           |
| 530 - 700 °C             | min. 2 h                                                         | still air                                                                                           |
| 3 x, see tempering curve | depending o                                                      | n cross section                                                                                     |
|                          | 800 - 860 °C<br>g 600 - 650 °C<br>1020 - 1060 °C<br>530 - 700 °C | 800 - 860 °C 2 - 5 h<br>g 600 - 650 °C min. 4 h<br>1020 - 1060 °C Group II<br>530 - 700 °C min. 2 h |

As-supplied condition:

(770 N/mm<sup>2</sup>)

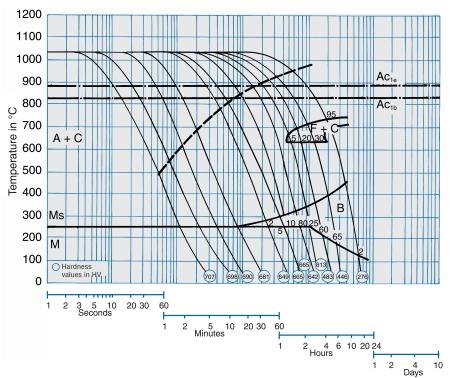
Characteristics:

polishability

Soft-annealed to max. 229 HB

Hot work steel with good high

temperature strength and very good


shock and wear, nitridable, good

toughness, high resistance to thermal

# Physical characteristics:

| 10 <sup>-6</sup> x m  | 100  | 200  | 300  | 400  | 500    | 600  | 700 °C |
|-----------------------|------|------|------|------|--------|------|--------|
| m x K                 | 10.8 | 11.4 | 11.8 | 12.0 | 12.4   | 12.8 | 12.9   |
| Thermal conductivity: | W    |      | 20   | 350  | 700 °C |      |        |
|                       | m x  | К    | 25.3 | 27.2 | 30.5   |      |        |

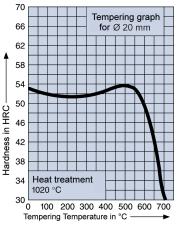
# Continuous time-temperature-transformation diagram



# General fields of application:

Tools for forging machines, dies, die inserts, extrusion tools, hot shearing knives and tools for plastics processing

### Special note:


If nitrided, the nitriding depth should not be too deep otherwise increased thermal cracking may occur.

Preheating to 200 - 300 °C before starting work is recommended.

Also available in EST and ESR grades.

# If grained or polished ES 235 W in EST grade should be used.

We recommend our ES Maximum 500 steel for highly polished mirrored finishes and for the highest toughness requirements.



# ES Maximum 500

Name:

X 37 CrMoV 5-1

Material No.: 1.2343 ESR

#### Typical analysis in %:

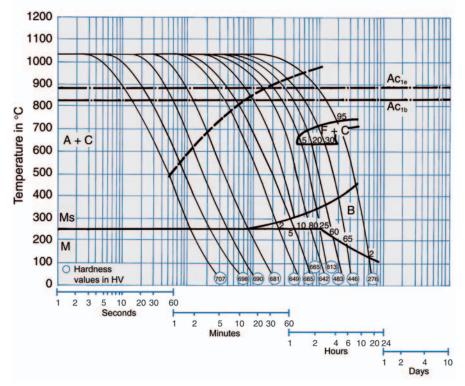
C Si Cr Mo V 0.37 1.0 5.3 1.3 0.4

### As-supplied condition:

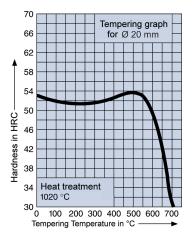
Structurally treated to max. 229 HB (770 N/mm<sup>2</sup>)

### Characteristics:

Good high temperature strength, resistance to thermal shock and high temperature wear with the very highest toughness, a combination of characteristics to match the highest


# Heat treatment data:

| Temperature              | Duration                                                         | Cooling                                                                                             |
|--------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| 800 - 840 °C             | 2 - 5 h                                                          | furnace                                                                                             |
| g 600 - 650 °C           | min. 4 h                                                         | furnace                                                                                             |
| 1000 - 1040 °C           | Group II                                                         | oil, air,                                                                                           |
|                          |                                                                  | WB 500 °C                                                                                           |
| 530 - 680 °C             | min. 2 h                                                         | still air                                                                                           |
| 3 x, see tempering curve | depending o                                                      | n cross section                                                                                     |
|                          | 800 - 840 °C<br>g 600 - 650 °C<br>1000 - 1040 °C<br>530 - 680 °C | 800 - 840 °C 2 - 5 h<br>g 600 - 650 °C min. 4 h<br>1000 - 1040 °C Group II<br>530 - 680 °C min. 2 h |


# Physical characteristics:

| Coefficient of therma | l expansio | n: betw | veen 20 | °C and: |        |      |        |
|-----------------------|------------|---------|---------|---------|--------|------|--------|
| 10 <sup>-6</sup> x m  | 100        | 200     | 300     | 400     | 500    | 600  | 700 °C |
| m x K                 | 10.8       | 11.4    | 11.8    | 12.0    | 12.4   | 12.8 | 12.9   |
| Thermal conductivity: | W<br>m x K | - \     | 20      | 350     | 700 °C |      |        |
| Normal working hardı  | 1ess: 30 - | 53 HRC  | (1000 - | 1850 N/ | mm²)   |      |        |

Continuous time-temperature-transformation diagram



Tempering curve



### General fields of application:

For particularly high requirements for homogeneity and toughness for pressure die casting tools for light metal; tools for forging machines, dies, die inserts, extrusion tools, punches and press dies for light metal processing, tools for screw, nut and bolt manufacturing, hot shearing knives, highly polished plastic moulds.

## Special note:

ES Maximum 500 is manufactured using the latest secondary metallurgy techniques. Numerous complementary quality improvement processes result in an extremely homogenous hot work steel with isotropic properties.

# ES 245 W

### Name:

X 40 CrMoV 5-1

Material No.: 1.2344

### Typical analysis in %:

C Si Cr Mo V 0.4 1.0 5.3 1.4 1.0

### As-supplied condition:

Soft-annealed to max. 229 HB (770 N/mm<sup>2</sup>)

### Characteristics:

CrMoV alloyed hot work steel with excellent high temperature strength and good toughness, good high temperature wear resistance, highest thermal shock resistance, very good cleanliness factor and excellent homogeneity, nitridable

### General fields of application:

Tools for forging machines, dies, die inserts, extrusion tools, hot shearing knives and tools for plastics processing

### Special note:

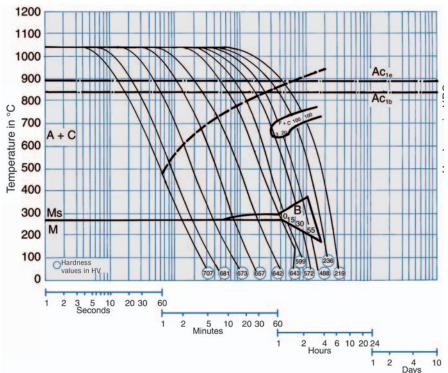
If nitrided, the nitriding depth should not be too deep otherwise increased thermal cracking may occur.

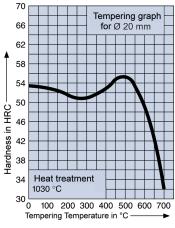
Preheating to 200 - 300 °C before starting work is recommended.

Also available in EST and ESR grades.

If grained or polished only ES 245 W in EST grade should be used.

We recommend ES 245 W steel in ESR grade for highly polished mirrored finishes.


# Heat treatment data:


|                         | Temperature                              | Duration                 | Cooling                    |
|-------------------------|------------------------------------------|--------------------------|----------------------------|
| Soft annealing          | 800 - 860 °C                             | 2 - 5 h                  | furnace                    |
| Stress-relief annealing | 600 - 650 °C                             | min.4h                   | furnace                    |
| Hardening               | 1020 - 1060 °C                           | Group II                 | oil, air<br>WB 500 °C      |
| Tempering               | 530 - 700 °C<br>3 x, see tempering curve | min. 2 h<br>depending on | still air<br>cross section |

# Physical characteristics:

| <i>Coefficient of thermo</i><br>10 <sup>-6</sup> x m                         | 100   | 200                 | 300  | 400  | 500    | 600  | 700 °C |  |  |
|------------------------------------------------------------------------------|-------|---------------------|------|------|--------|------|--------|--|--|
| m x K                                                                        | 10.9  | 11.9                | 12.3 | 12.7 | 13.0   | 13.3 | 13.5   |  |  |
| Thermal conductivity: W                                                      |       |                     | 20   | 350  | 700 °C |      | V      |  |  |
|                                                                              | m x ł | < label{eq:starter} | 24.5 | 26.8 | 28.8   |      |        |  |  |
| <i>Normal working hardness:</i> 30 - 54 HRC (1000 - 1900 N/mm <sup>2</sup> ) |       |                     |      |      |        |      |        |  |  |

Continuous time-temperature-transformation diagram





# ES 245 W ESR

#### Name:

X 40 CrMoV 5-1

Material No.: 1.2344 ESR

#### Typical analysis in %:

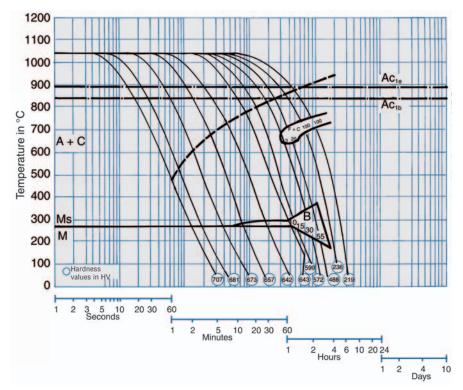
C Si Cr Mo V 0.4 1.0 5.3 1.4 1.0

### As-supplied condition:

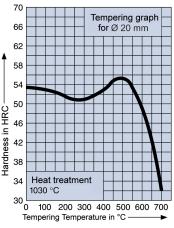
Structurally treated to max. 229 HB (770 N/mm<sup>2</sup>)

### Characteristics:

Cr-Mo-V alloyed hot work steel with very high homogeneity and cleanliness factor, excellent high temperature strength, good high temperature wear resistance and the highest thermal


# Heat treatment data:

|                         | Temperature                         | Duration                   | Cooling                   |
|-------------------------|-------------------------------------|----------------------------|---------------------------|
| Soft annealing          | 820 - 860 °C                        | 2 - 5 h                    | furnace                   |
| Stress-relief annealing | 600 - 650 °C                        | min.4 h                    | furnace                   |
| Hardening               | 1020 - 1060 °C                      | Group II                   | oil, air<br>WB 500° C     |
| Tempering               | 530 - 700 °C<br>see tempering curve | min. 2 h<br>depending on c | still air<br>ross section |


# Physical characteristics:

| Coefficient of thermal expansion: between 20 °C and: |                                                                       |      |            |             |                |      |        |  |  |
|------------------------------------------------------|-----------------------------------------------------------------------|------|------------|-------------|----------------|------|--------|--|--|
| 10 <sup>-6</sup> x m                                 | 100                                                                   | 200  | 300        | 400         | 500            | 600  | 700 °C |  |  |
| m x K                                                | 10.9                                                                  | 11.9 | 12.3       | 12.7        | 13.0           | 13.3 | 13.5   |  |  |
| Thermal conductivi                                   | ty: W<br>m x                                                          | ĸ    | 20<br>24.5 | 350<br>26.8 | 700 °C<br>28.8 |      |        |  |  |
| Normal working ha                                    | Normal working hardness: 30 - 54 HRC (1000 - 1900 N/mm <sup>2</sup> ) |      |            |             |                |      |        |  |  |

Continuous time-temperature-transformation diagram



Tempering curve



## shock resistance. These characteristics match the highest requirements encountered in use.

### General fields of application:

Extremely highly loaded hot work tools with particular requirements for homogeneity and toughness in injection moulds. Tools for forging machines, dies, extrusion tools such as press dies for light metal processing. Tools for hot shearing knives and plastic processing.

## Special note:

If nitrided, the nitriding depth should not be too deep otherwise increased thermal cracking may occur.

Preheating to 200 - 300 °C before starting work is recommended.

# ES 65 S

### *Name:* X 100 CrMoV 5

Material No.: 1.2363

Typical analysis in %:

C Cr Mo V 1.0 5.2 1.2 0.3

## Heat treatment data:

| A. | s-suppl | led o | condi | tion: |
|----|---------|-------|-------|-------|
|----|---------|-------|-------|-------|

Soft-annealed to max. 241 HB (810 N/mm<sup>2</sup>)

### Characteristics:

Air-hardening special cold work steel, with respect to toughness and wear resistance it is between medium and high alloyed steels; good machinability, high hardenability, low dimensional changes as a result of heat treatment, good through-hardening properties and excellent compressive strength

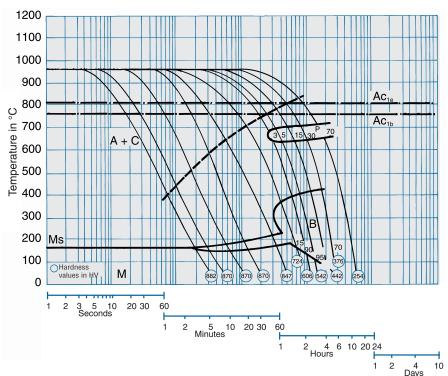
### General fields of application:

Cutting and pressing tools, rollers, shearing knives, thread rolling dies, cold stamping tools, calibration and pilger mandrels, moulds for plastic processing, gauges and measuring tools

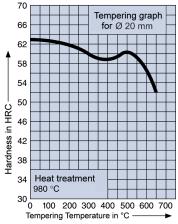
## Special note:

If electrical discharge machining takes place after hardening then the material should be tempered three times above 520 °C after quenching.

|                         | Temperature                         | Duration                 | Cooling                      |
|-------------------------|-------------------------------------|--------------------------|------------------------------|
| Soft annealing          | 820 - 850 °C                        | 4 - 6 h                  | furnace                      |
| Stress-relief annealing | 600 - 650 °C                        | min. 4 h                 | furnace                      |
| Hardening               | 950 - 980 °C                        | Group II                 | oil, air,<br>WB 500 °C       |
| Tempering               | 180 - 600 °C<br>see tempering curve | min. 2 h<br>depending or | still air<br>I cross section |
|                         | · · ·                               |                          |                              |


## Physical characteristics:

### *Coefficient of thermal expansion:* between 20 °C and:


| 10⁻⁵ x m              | 100   | 200  | 300  | 400 °C | _      |
|-----------------------|-------|------|------|--------|--------|
| m x K                 | 9.9   | 12.5 | 13.2 | 14.5   |        |
| Thermal conductivity: | W     |      | 20   | 350    | 700 °C |
|                       | m x K |      | 15.8 | 26.7   | 29.1   |

Normal working hardness: 58 - 62 HRC

Continuous time-temperature-transformation diagram



Tempering curve



21

# ES 265 W

### Name:

X 38 CrMoV 5-3

*Material No.:* 1.2367

### Typical analysis in %:

| С    | Si  | Mn  | Cr  | Мо  | V   |
|------|-----|-----|-----|-----|-----|
| 0.38 | 0.4 | 0.5 | 5.0 | 3.0 | 0.6 |

## As-supplied condition:

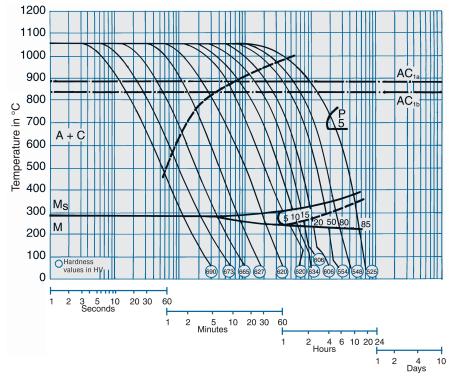
Soft-annealed to max. 229 HB (770 N/mm<sup>2</sup>)

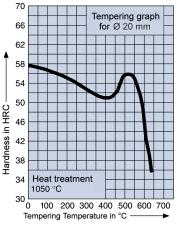
## Characteristics:

CrMoV alloyed hot work steel with excellent high temperature strength and good high temperature toughness

### General fields of application:

Extrusion tools, die inserts, injection moulds, mandrels


# Special note:


Also supplied as EST and ESR grades for the highest requirements.

# Heat treatment data:

|                                      | Temperat       | ure       |         | Duration    | Со       | oling       |  |
|--------------------------------------|----------------|-----------|---------|-------------|----------|-------------|--|
| Soft annealing                       | 820 - 84       | 40 °C     |         | 4 - 6 h     | fur      | nace        |  |
| Stress-relief annealin               | g 600 - 65     | 50 °C     |         | min.4h      | fur      | nace        |  |
| Hardening                            | 1030 - 10      | 060 °C    |         | Group II    | oil      | , air,      |  |
|                                      |                |           |         |             | WE       | 3 500-550°C |  |
| Tempering                            | 500 - 70       | 0° 00     |         | min. 2 h    | sti      | ll air      |  |
|                                      | 3 x, see temp  | ering cur | ve      | depending o | on cross | section     |  |
| Physical charac                      | cteristics:    |           |         |             |          |             |  |
| Coefficient of thermal               | expansion: bet | ween 20   | °C and: | : /         |          |             |  |
| 10 <sup>-6</sup> x m                 | 100 200        | 300       | 400     | 500         | 600      | 700 °C      |  |
| m x K                                | 11.9 12.5      | 12.6      | 12.8    | 13.1        | 13.3     | 13.5        |  |
|                                      |                |           |         |             |          |             |  |
| Thermal conductivity:                | W              | 20        | 350     | 700 °C      |          |             |  |
|                                      | m x K          | 36.4      | 32.2    | 27.5        |          |             |  |
| Normal working hardness: 35 - 52 HRC |                |           |         |             |          |             |  |

Continuous time-temperature-transformation diagram





# ES 265 W ESR

### Name:

X 38 CrMoV 5-3

Material No.: 1.2367 ESR

### Typical analysis in %:

| С    | Si  | Mn  | Cr  | Мо  | V   |
|------|-----|-----|-----|-----|-----|
| 0.38 | 0.4 | 0.5 | 5.0 | 3.0 | 0.6 |

### As-supplied condition:

Structurally treated to max. 229 HB (770  $N/mm^2)$ 

### Characteristics:

CrMoV alloyed hot work steel with excellent high temperature strength and good high temperature toughness.

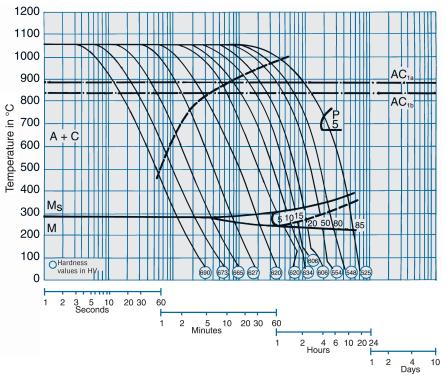
### General fields of application:

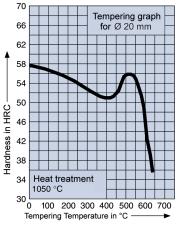
Extrusion tools, die inserts, injection moulds, mandrels

### Special note:

We recommend triple tempering to increase toughness. Preheating before bringing into operation to at least 300 °C is a mandatory requirement.

# Heat treatment data:


|                         | Temperature         | Duration     | Cooling         |
|-------------------------|---------------------|--------------|-----------------|
| Soft annealing          | 820 - 840 °C        | 4 - 6 h      | furnace         |
| Stress-relief annealing | 600 - 650 °C        | min. 4 h     | furnace         |
| Hardening               | 1030 - 1060 °C      | Group II     | oil, air        |
|                         |                     |              | WB 500-550° C   |
| Tempering               | 500 - 700 °C        | min. 2 h     | still air       |
|                         | see tempering curve | depending or | r cross section |
| Discont and the second  |                     |              |                 |


# Physical characteristics:

| Coefficient of therma      | ıl expansi | on: bet | ween 20 | °C and: |        |      |        |
|----------------------------|------------|---------|---------|---------|--------|------|--------|
| <u>10<sup>-6</sup> x m</u> | 100        | 200     | 300     | 400     | 500    | 600  | 700 °C |
| m x K                      | 11.9       | 12.5    | 12.6    | 12.8    | 13.1   | 13.3 | 13.5   |
| Thermal conductivity.      | : W        |         | 20      | 350     | 700 °C |      |        |
|                            | m x K      |         | 36.4    | 32.2    | 27.5   |      |        |

Normal working hardness: 35 - 52 HRC

Continuous time-temperature-transformation diagram





# ES 70 S

# *Name:* X 153 CrMoV 12

Material No.: 1.2379

*Typical analysis in %:* C Cr Mo V 1.53 12.0 0.7 1.0

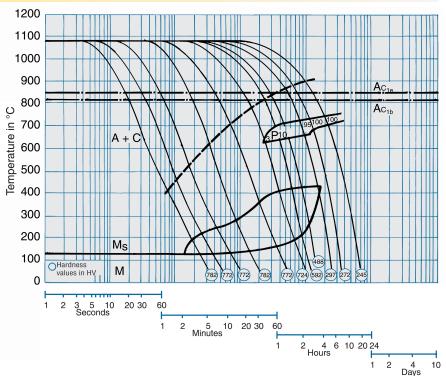
## As-supplied condition:

Soft-annealed to max. 255 HB (860 N/mm<sup>2</sup>)

### Characteristics:

Ledeburitic 12 % chromium steel, high wear resistance, good toughness, high compressive strength, low distortion, nitridable.

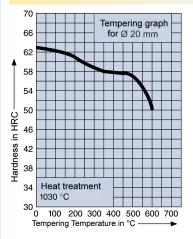
# Heat treatment data:


|                         | Temperature              | Duration    | Cooling                |
|-------------------------|--------------------------|-------------|------------------------|
| Soft annealing          | 820 - 850 °C             | 2 - 5 h     | furnace                |
| Stress-relief annealing | 600 - 650 °C             | min. 4 h    | furnace                |
| Hardening               | 1000 - 1050 °C           | Group III   | oil, air,<br>WB 500 °C |
| Tempering               | 480 - 580 °C             | min. 2 h    | still air              |
|                         | 3 x, see tempering curve | depending o | n cross section        |
| Physical charact        | torictics                |             |                        |

### Physical characteristics:

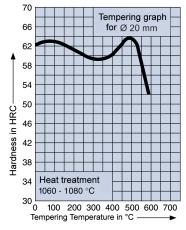
| Coefficient of therma      | l expansi | on: betw | een 20 ' | °C and: |        |
|----------------------------|-----------|----------|----------|---------|--------|
| <u>10<sup>-6</sup> x m</u> | 100       | 200      | 300      | 400 °(  | : /    |
| m x K                      | 10.5      | 11.5     | 12.0     | 12.2    |        |
| Thermal conductivity:      | W         |          | 20       | 350     | 700 °C |
|                            | m x K     | :        | 16.7     | 20.5    | 24.2   |
| Normal working hard        | nocc: 59  | 62 400   |          |         |        |

Normal working hardness: 58 - 62 HRC


# Continuous time-temperature-transformation diagram



### General fields of application:


Deep drawing tools, sections susceptible to fracture, shearing knives, trimming dies, thread rolling tools, woodworking tools, hobbing tools, extrusion dies; compression and injection moulds for filled plastics, sprue bushings

## Tempering curve



### Special heat treatment:

If the steel is electrical discharge machined or nitrided the tempering temperature must be above the secondary maximum. Triple tempering is recommended.



# ES 50 SW

### *Name:* X 210 CrW 12

Material No.: 1.2436

*Typical analysis in %:* C Cr W 2.1 12.0 0.7

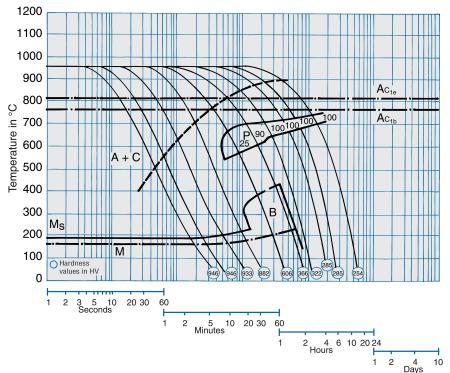
# Heat treatment data:

| l //c cunn | Inod | condition: |
|------------|------|------------|
|            |      |            |
|            |      |            |
|            |      |            |

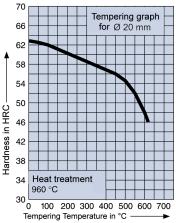
Soft-annealed to max. 255 HB (855 N/mm<sup>2</sup>)

### Characteristics:

Ledeburitic 12 % chromium steel, characteristics as ES 50 S but with improved hardenability and wear resistance.


|                         | Temperature         | Duration     | Cooling       |
|-------------------------|---------------------|--------------|---------------|
| Soft annealing          | 800 - 840 °C        | 2 - 5 h      | furnace       |
| Stress-relief annealing | 600 - 650 °C        | min.4h       | furnace       |
| Hardening               | 950 - 980 °C        | Group III    | oil, air,     |
|                         |                     |              | WB 500 °C     |
| Tempering               | 200 - 550 °C        | min. 2 h     | still air     |
|                         | see tempering curve | depending on | cross section |
| Dhusiaal sharasta       | viction             |              |               |

## Physical characteristics:


| Coefficient of therma | l expansi | on: bet | ween 20 | °C and: |        |      |        |
|-----------------------|-----------|---------|---------|---------|--------|------|--------|
| <u>10-6 x m</u>       | 100       | 200     | 300     | 400     | 500    | 600  | 700 °C |
| m x K                 | 10.9      | 11.9    | 12.3    | 12.6    | 12.9   | 13.0 | 13.2   |
| Thermal conductivity: | W         |         | 20      | 350     | 700 °C |      |        |
|                       | m x K     |         | 16.7    | 20.5    | 24.2   |      |        |

Normal working hardness: 59 - 63 HRC

Continuous time-temperature-transformation diagram



# Tempering curve



### General fields of application:

Cutting tools, shearing knives, broaches, woodworking tools, profile and flanging rollers, thread rolling tools, deep drawing and pressing tools, drawing mandrels, guide rails, extrusion dies, sand blast nozzles, rotary shear knives

## Special note:

Not suitable for larger wire sections; for this we recommend ES 70 S, Mat. No. 1.2379.

Through-hardening workpiece ø for 64 HRC: 75 mm 62 HRC: 85 mm 60 HRC: 100 mm

58 HRC: 250 mm

Core hardness for ø 300 mm: approx. 56 HRC

Core hardness for ø 500 mm: approx. 41 HRC

Cooling: blown air

# ES 370 G

### Name: 55 NiCrMoV 7

Material No.: 1.2714

### Typical analysis in %:

C Cr Mo Ni V 0.55 1.1 0.5 1.7 0.1

## As-supplied condition:

Soft-annealed to max. 248 HB (830 N/mm<sup>2</sup>)

### Characteristics:

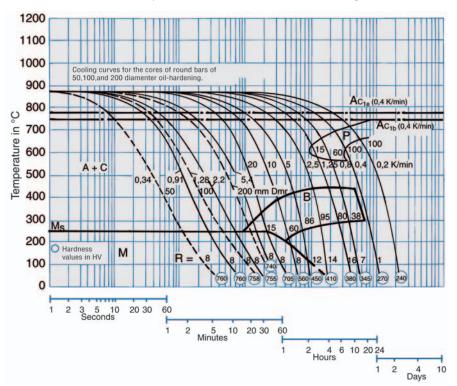
Oil and air hardening die steel with good through hardenability, good toughness and high temperature strength

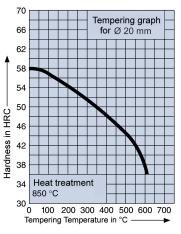
### General fields of application:

For drop forging up to the largest sizes, forging saddles, hot shearing knives, extrusion tools, die holders, support tools

# Special note:

ES 370 G is also available in quenched and tempered form.


# Heat treatment data:


|                         | Temperature         | Duration        | Cooling     |
|-------------------------|---------------------|-----------------|-------------|
| Soft annealing          | 680 - 720 °C        | 2 - 5 h         | furnace     |
| Stress-relief annealing | 600 - 650 °C        | min.4h          | furnace     |
| Hardening               | 830 - 870 °C        | Group II        | oil,        |
|                         | 860 - 900 °C        |                 | air         |
| Tempering               | 300 - 600 °C        | min. 2 h        | still air   |
|                         | see tempering curve | depending on cr | oss section |

# Physical characteristics:

| Coefficient of therma | l expansi  | on: betv | veen 20   | °C and: |        |        |
|-----------------------|------------|----------|-----------|---------|--------|--------|
| 10 <sup>-6</sup> x m  | 100        | 200      | 300       | 400     | 500    | 600 °C |
| m x K                 | 12.2       | 13.0     | 13.3      | 13.7    | 14.2   | 14.4   |
|                       |            |          |           |         |        |        |
| Thermal conductivity: | W          | _ \      | 20        | 350     | 700 °C |        |
|                       | m x K      | : \      | 36.0      | 38.0    | 35.0   |        |
| Normal working hardr  | 1ess: 36 - | · 52 HR  | . (1200 - | 1800 N/ | ′mm²)  |        |

Continuous time-temperature-transformation diagram





# ES Aktuell 1000

#### Name:

40 CrMnNiMo 8-6-4

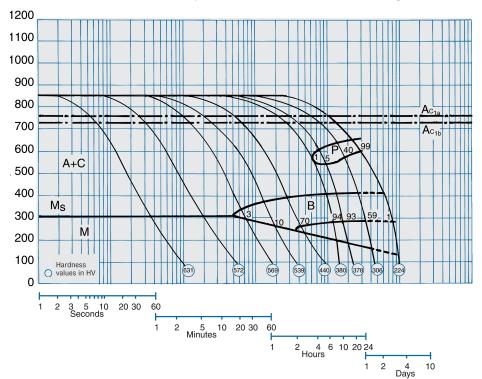
*Material No.:* 1.2738

Typical analysis in %:

C Mn Cr Mo Ni 0.4 1.5 2.0 0.25 1.0

## Heat treatment data:

|                         | Temperature | Duration | Cooling |  |
|-------------------------|-------------|----------|---------|--|
| Stress-relief annealing | max. 480 °C | min. 4 h | furnace |  |


We recommend stress-relief annealing for more than 30 % machining before finish machining.

# Physical characteristics:

| 10 <sup>-6</sup> x m  | 100   | 200  | 300  | 400  | 500    | 600  | 700 °C |
|-----------------------|-------|------|------|------|--------|------|--------|
| m x K                 | 11.1  | 12.9 | 13.4 | 13.8 | 14.2   | 14.6 | 14.9   |
| Thermal conductivity: | W     |      | 20   | 350  | 700 °C |      |        |
|                       | m x K |      | 35.5 | 33.2 | 31.9   |      |        |

Normal working hardness: Used in the as-supplied condition

Continuous time-temperature-transformation diagram



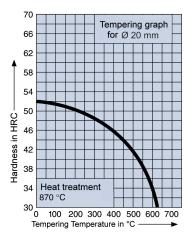
### As-supplied condition:

Quenched and tempered to a hardness of 280 to 325 HB (950 - 1100  $\ensuremath{N/mm^2}\xspace)$ 

### Characteristics:

Uniform hardness throughout the cross section, good polishability, good machinability, nitridable, suitable for chromium plating, weldable to standards using all welding processes

## General fields of application:


Mould steel for plastic moulds with plate thicknesses of approx. 400 mm upwards if uniform hardness, increased toughness and polishability are required, even in the base of the mould. Moulds for television casings and backs, copier bodies, bumper moulds, moulds for vehicle dashboards and large external car body parts, refuse container moulds, die casting frames

### Special note:

ES Aktuell 1000 – a tool steel designed for the largest plastic moulds. The additional 1 % nickel content considerably improves full thickness heat treatability compared with material 1.2311. Preworking the mould in the annealed condition followed by hardening and tempering after rough machining is not required.

Also available in EST grade.

If grained or polished only ES Aktuell 1000 in EST grade, Mat. No. 1.2738 EST should be used.



# ES Aktuell 1200

## Name:

# Special alloy

| Typical analysis in %: |     |     |     |     |  |  |
|------------------------|-----|-----|-----|-----|--|--|
| С                      | Mn  | Cr  | Ni  | Мо  |  |  |
| 0.25                   | 1.4 | 1.3 | 1.0 | 0.5 |  |  |

+ trace elements

### As-supplied condition:

Quenched and tempered to a hardness of 310-355 HB (1050-1200 N/mm<sup>2</sup>)

### Characteristics:

Uniformly high hardness over the cross section, very good weldability, good polishability and graining suitability, high thermal conductivity, higher tool service life

# Heat treatment data:

|                         | Temperature               | Duration       | Cooling          |
|-------------------------|---------------------------|----------------|------------------|
| Stress-relief annealing | max. 480 °C               | min.4h         | furnace          |
| We recommend stress-rel | of annealing for more the | n 30% machinir | na hoforo finish |

We recommend stress-relief annealing for more than 30 % machining before finish machining.

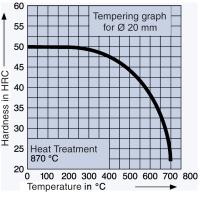
# Physical characteristics:

| Coefficient of therma | l expansio | n: bet | ween 20 | °C and: |       |        |
|-----------------------|------------|--------|---------|---------|-------|--------|
| 10 <sup>-6</sup> x m  | 100        | 200    | 300     | 400     | 500   | 600 °C |
| m x K                 | 10.9       | 12.6   | 13.0    | 13.5    | 13.8  | 14.2   |
| Thermal conductivity: | W          | _ \    | 20      | 350     | 700°C |        |
|                       | m x K      |        | 38.0    | 40.1    | 40.8  |        |

Normal working hardness: Used in the as-supplied condition

### General fields of application:

Plastic mould steel for large moulds with high wear resistance, moulds for vehicle bumpers, dashboards, moulds for the largest external car body parts, refuse container moulds and other large moulds


## Special note:

ES Aktuell 1200 – a steel designed for the harshest conditions with uniform high strength right into the core – perfectly engineered for the best mould.

Improved specifications for increased quality and productivity in the mould making and plastics industries.

ES Aktuell 1200 is usually supplied in EST grade.





# ES 106 K

# Name:

X 19 NiCrMo 4

*Material No.:* 1.2764

*Typical analysis in %:* C Cr Mo Ni

0.19 1.3 0.3 4.1

# Heat treatment data:

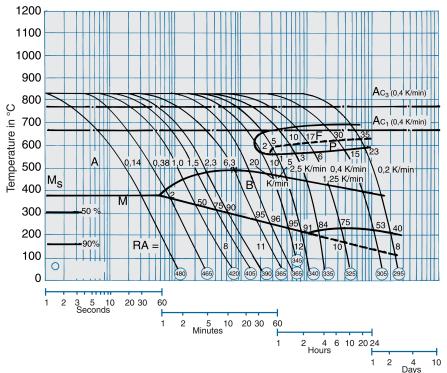
### As-supplied condition:

Soft-annealed to max. 255 HB (855 N/mm<sup>2</sup>)

### Characteristics:

Very tough, air hardening case hardening steel, low dimensional change, excellent polishability, very high core strength of up to 1500 N/mm<sup>2</sup>

|                         | Temperature         | Duration                   | Cooling   |  |
|-------------------------|---------------------|----------------------------|-----------|--|
| Soft annealing          | 620 - 650 °C        | 2 - 5 h                    | furnace   |  |
| Stress-relief annealing | 600 - 650 °C        | min.4h                     | furnace   |  |
| Hardening               | 780 - 810 °C        | Group II                   | oil,      |  |
|                         | 800 - 830 °C        |                            | air       |  |
| Tempering               | 180 - 300 °C        | min. 2 h                   | still air |  |
|                         | see tempering curve | depending on cross section |           |  |
|                         |                     |                            |           |  |


# Physical characteristics:

# *Coefficient of thermal expansion:* between 20 °C and:

| 10 <sup>-6</sup> x m  | 100   | 200  | 300  | 400 °C | ·<br>· |
|-----------------------|-------|------|------|--------|--------|
| m x K                 | 12.2  | 13.0 | 12.1 | 13.5   |        |
| Thermal conductivity: | W     |      | 20   | 350    | 700°C  |
|                       | m x K |      | 33.5 | 32.2   | 32.0   |
|                       | m x K |      | 33.5 | 32.2   | 32.0   |

| Normal working | y hardness: | 50 - 60 HRC |
|----------------|-------------|-------------|
|----------------|-------------|-------------|

Continuous time-temperature-transformation diagram



## General fields of application:

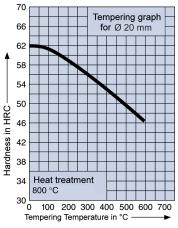
Moulds for plastics processing involving deep and complicated impressions

### Special note:

Case hardening temperature in powder: 850 - 880 °C

In salt bath: 880 - 930 °C

Intermediate annealing temperature: 600 - 650 °C


Core strength after oil or WB hardening: 1200 - 1500 N/mm<sup>2</sup>

After air or compressed air hardening: 1100 - 1300 N/mm<sup>2</sup>

After hardening in case hardening box: 900 - 1100 N/mm<sup>2</sup>

Surface hardness after oil hardening: approx. 60 HRC

After air hardening: approx. 55 - 60 HRC



# ES 275 K

### Name: 45 NiCrMo 16

Material No.: 1.2767

*Typical analysis in %:* C Cr Mo Ni

0.45 1.4 0.3 4.0

# Heat treatment data:

|                            | Temperature                         | Duration                   | Cooling                |
|----------------------------|-------------------------------------|----------------------------|------------------------|
| Soft annealing             | 620 - 650 °C                        | 2 - 5 h                    | furnace                |
| Stress-relief annealing    | 600 - 650 °C                        | min.4h                     | furnace                |
| Hardening                  | 840 - 870 °C                        | Group II                   | oil, air,<br>WB 200 °C |
| Tempering                  | 180 - 600 °C<br>see tempering curve | min. 2 h<br>depending on o | still air              |
| Discontinuit a la sus stat |                                     |                            |                        |

As-supplied condition:

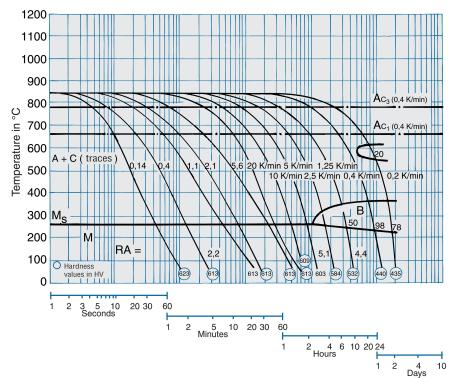
(965 N/mm<sup>2</sup>)

Characteristics:

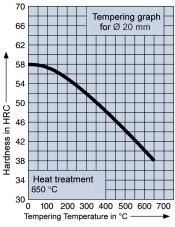
good polishability

Soft-annealed to max. 285 HB

Through-hardening steel with the


highest toughness, low distortion,

# Physical characteristics:


| Coefficient of thermo      | ıl expansio | n: betw | veen 20 | °C and: |        |      |        |
|----------------------------|-------------|---------|---------|---------|--------|------|--------|
| <u>10<sup>-6</sup> x m</u> | 100         | 200     | 300     | 400     | 500    | 600  | 700 °C |
| m x K                      | 11.8        | 12.5    | 12.8    | 13.1    | 13.4   | 13.8 | 13.6   |
|                            |             |         |         |         |        |      |        |
| Thermal conductivity       | : W         | _ \     | 20      | 350     | 700 °C |      |        |
|                            | m x K       |         | 30.0    | 30.5    | 32.0   |      |        |
|                            | -           |         | DC      |         |        |      |        |

Normal working hardness: 50 - 56 HRC

Continuous time-temperature-transformation diagram



Tempering curve



Solid coining dies for the highest toughness requirements, extremely highly loaded cutlery presses, tools for heavy cold forming, hobbing tools, shearing blades and cutters for cutting very thick material; plastic, compression and injection moulds, which require high hardness combined with the highest toughness

## Special note:

Also available in EST and ESR grades.

If grained only ES 275 K in EST grade should be used.

# **ES 275 K ESR**

### Name: 45 NiCrMo 16

Material No.: 1.2767 ESR

Typical analysis in %:

С Cr Мо Ni 0.45 1.4 0.3 4.0

| Heat treatment data:    |                                     |                             |                          |  |  |  |
|-------------------------|-------------------------------------|-----------------------------|--------------------------|--|--|--|
|                         | Temperature                         | Duration                    | Cooling                  |  |  |  |
| Soft annealing          | 620 - 650 °C                        | 2 - 5 h                     | furnace                  |  |  |  |
| Stress-relief annealing | 600 - 650 °C                        | min.4h                      | furnace                  |  |  |  |
| Hardening               | 840 - 870 °C                        | Group II                    | oil, air<br>WB 200° C    |  |  |  |
| Tempering               | 180 - 600 °C<br>see tempering curve | min. 2 h<br>depending on cr | still air<br>oss section |  |  |  |

As-supplied condition:

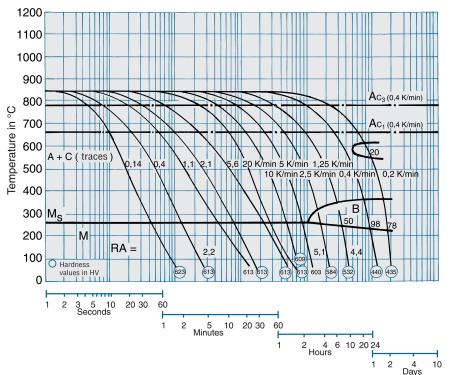
with high polishability.

(965 N/mm<sup>2</sup>)

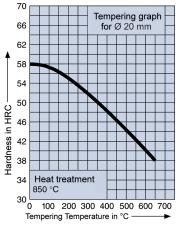
Characteristics:

Soft-annealed to max. 285 HB

Through-hardening steel with the


highest toughness, low distortion.

ESR technology provides this material


# Physical characteristics:

| 10⁻⁵ x m      | 1        | .00 | 200  | 300  | 400  | 500    | 600  | 700 °C |
|---------------|----------|-----|------|------|------|--------|------|--------|
| m x K         | 1        | 1.8 | 12.5 | 12.8 | 13.1 | 13.4   | 13.8 | 13.6   |
| Thermal condu | ctivity: | W   |      | 20   | 350  | 700 °C |      |        |
|               |          | m x | К    | 30.0 | 30.5 | 32.0   |      |        |

Continuous time-temperature-transformation diagram



Tempering curve



## General fields of application:

Solid coining dies for the highest toughness requirements, extremely highly loaded cutlery presses, tools for heavy cold forming, hobbing tools, shearing blades and cutters for cutting very thick material; plastic, compression and injection moulds, which require high hardness combined with the highest toughness.

# ES 60 S

## Name: 90 MnCrV 8

Material No.: 1.2842

*Typical analysis in %:* C Mn Cr V

0.9 2.0 0.4 0.1

### As-supplied condition:

Soft-annealed to max. 229 HB (770 N/mm<sup>2</sup>)

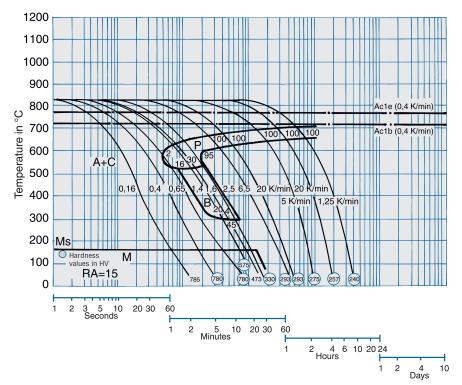
## Characteristics:

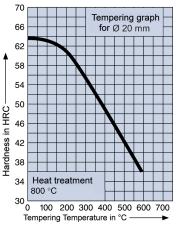
Oil hardening steel with simple heat treatment, especially easy to machine, high hardenability, good dimensional stability

### General fields of application:

Punching, cutting, deep drawing tools, stamps, industrial knives, cutting tools, measuring tools, compression and injection moulds, sprue bushings, clamping plates, guide columns

# Heat treatment data:


|                         | Temperature         | Duration                   | Cooling   |
|-------------------------|---------------------|----------------------------|-----------|
| Soft annealing          | 680 - 720°C         | 2 - 5 h                    | furnace   |
| Stress-relief annealing | 600 - 650 °C        | min. 4 h                   | furnace   |
| Hardening               | 790 - 820 °C        | Group II                   | oil       |
| Tempering               | 180 - 250 °C        | min. 2 h                   | still air |
|                         | see tempering curve | depending on cross section |           |


# Physical characteristics:

| Coefficient of therma | ıl expansio | n: betw | een 20 | °C and: |        |      |        |
|-----------------------|-------------|---------|--------|---------|--------|------|--------|
| 10⁻⁰ x m              | 100         | 200     | 300    | 400     | 500    | 600  | 700 °C |
| m x K                 | 12.2        | 13.2    | 13.8   | 14.3    | 14.7   | 15.0 | 15.3   |
| Thermal conductivity. | w w         |         | 20     | 350     | 700 °C |      |        |
|                       | m x K       |         | 33.3   | 32.0    | 31.3   |      |        |
|                       |             |         |        |         |        |      |        |

Normal working hardness: 57 - 62 HRC

Continuous time-temperature-transformation diagram





# ES 4122

### *Name:* X 39 CrMo 17-1

*Material No.:* 1.4122 mod.

# Typical analysis:

C Cr Mo Ni 0.39 17.0 1.0 ≤ 1.0

# As-supplied condition:

Quenched and tempered: 280-325 HB (950-1100 N/mm<sup>2</sup>)

#### Characteristics:

17% chromium steel with good corrosion resistance

## General fields of application:

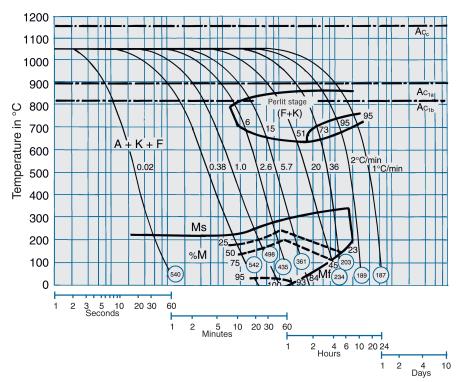
Pump shafts, pipe fittings and compressor components, steam and water valves

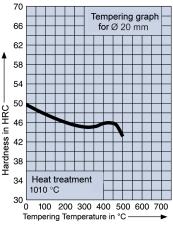
#### Special note:

Nitriding the steel causes it to lose corrosion resistance

# Heat treatment data:

|                         | Temperature | Duration | Cooling |  |
|-------------------------|-------------|----------|---------|--|
| Stress-relief annealing | max. 480 °C | min. 4 h | furnace |  |
|                         |             |          |         |  |


We recommend stress-relief annealing for more than 30 % machining before finish machining.


# Physical characteristics:

| Coefficient of thermal expansion: between 20 °C and: |       |      |      |        |        |  |  |  |
|------------------------------------------------------|-------|------|------|--------|--------|--|--|--|
| <u>10⁻⁰ x m</u>                                      | 100   | 300  | 400  | 500 °C |        |  |  |  |
| m x K                                                | 10.5  | 11.0 | 11.0 | 11.5   | 12.0   |  |  |  |
| Thermal conductivity:                                | W     |      | 20   | 350    | 700 °C |  |  |  |
|                                                      | m x K |      | 17.2 | 21.0   | 24.7   |  |  |  |

Normal working hardness: Used in the as-supplied condition

Continuous time-temperature-transformation diagram





# ES LB 100

## Name:

# Special alloy

| Туріс | al ana | lysis i | n %: |
|-------|--------|---------|------|
| С     | Mn     | Cr      | Мо   |
| 0.4   | 1.0    | 1.5     | 0.2  |

## As-supplied condition:

Quenched and tempered to approx. 300 HB (1000 N/mm<sup>2</sup>)

### Characteristics:

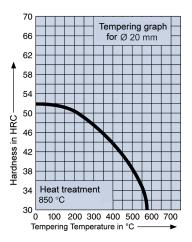
Special alloyed improved heat-treatable steel with increased mechanical properties compared to normal grade, nitridable by all usual processes

## General fields of application:

The ideal material for structural steelwork.

### Special note:

If machinability is the main requirement we recommend the sulphur alloyed variant ES LB 100 S.


# Heat treatment data:

|                          | Temperature              | Duration       | Cooling           |
|--------------------------|--------------------------|----------------|-------------------|
| Stress-relief annealing  | max. 480 °C              | min.4h         | furnace           |
| We recommend stress-reli | ef annealing for more th | an 30 % machir | ing before finish |
| machining.               |                          |                |                   |

# Physical characteristics:

| Coefficient of thermo | ıl expansi          | on: bet | ween 20 °     | °C and: |      |        |
|-----------------------|---------------------|---------|---------------|---------|------|--------|
| 10⁻⁰ x m              | 100                 | 200     | 300           | 400     | 500  | 600 °C |
| m x K                 | 11.0                | 12.0    | 13.0          | 13.5    | 14.0 | 14.3   |
| Thermal conductivity  | : <u>W</u><br>m x K |         | 20 °C<br>40.0 |         |      |        |

Normal working hardness: Used in the as-supplied condition



# ES LB 100 S

# Name:

# Special alloy

| Typical analysis in %: |     |     |     |      |  |  |  |
|------------------------|-----|-----|-----|------|--|--|--|
| С                      | Mn  | Cr  | Мо  | S    |  |  |  |
| 0.4                    | 1.0 | 1.5 | 0.2 | 0.07 |  |  |  |

### As-supplied condition:

Quenched and tempered to approx. 300 HB (approx. 1000 N/mm<sup>2</sup>)

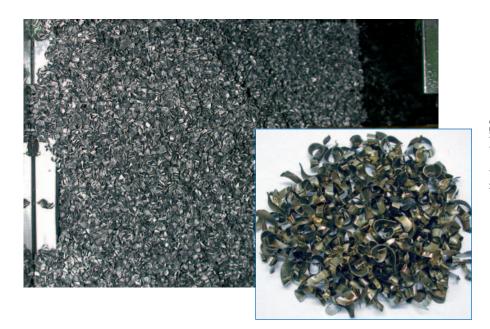
### Characteristics:

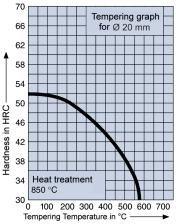
Improved machinability by addition of sulphur compared with ES LB 100

### General fields of application:

Applications for which machinability is a main requirement.

# Heat treatment data:


|              |             | Tem | perature | Duration | Cooling |
|--------------|-------------|-----|----------|----------|---------|
| Stress-relie | efannealing | max | . 480 °C | min. 4 h | furnace |
|              |             |     |          |          |         |


We recommend stress-relief annealing for more than 30% machining before finish machining.

# Physical characteristics:

| Coefficient of thermal expansion: between 20 °C and: |       |      |       |      |      |        |  |
|------------------------------------------------------|-------|------|-------|------|------|--------|--|
| 10⁻⁰ x m                                             | 100   | 200  | 300   | 400  | 500  | 600 °C |  |
| m x K                                                | 11.0  | 12.0 | 13.0  | 13.5 | 14.0 | 14.3   |  |
| Thermal conductivity:                                | W     |      | 20 °C |      |      |        |  |
|                                                      | m x K |      | 40.0  |      |      |        |  |

Normal working hardness: Used in the as-supplied condition





# Quality and production standards

Our tool steel is produced by applying our know-how with the greatest of care in state-of-the-art metallurgical facilities, rolling mills and forging machines.

All our steel grades fulfil the requirements of the German tool steel standard **DIN EN ISO 4957**.

Many of our tool steel grades, particularly our plastic mould and hot work steels, considerably exceed the steel properties requirements of the **DIN.** 

This provides greater safety even with tools subject to the severest of demands. This is specially indicated the grade designations **EST** and **ESR**.

# EST – Extra Structure

From steel manufacture to heat treatment, our special processes ensure considerable improvements over normal steel grades.

In particular the improvements include:

- Better cleanliness factor
- Higher toughness
- More homogenous microstructure after annealing/hardening/ tempering
- Structural treatment
- Greater dimensional stability during heat treatment
- Improved polishability and suitability for graining

Hot work steels comply with the requirements of SEP 1614, VDG and DGM.

## ESR – Electroslag Remelting

Remelting the already cast steel ingot in a synthetic slag under controlled conditions further improves the properties of the steel with respect to:

- Reduction of ingot segregation
- Minimum sulphur and phosphorus content
- Hardly any sulphide or oxide inclusions
- Highest toughness both longitudinally and transversely
- Fine grained microstructure due to continuous solidification
- Highest homogenity
- Highest suitability for highly polished mirrored finishes and graining





# **ESCHMANN STAHL**

# Heat treatment

The primary influence on the characteristics of tool steel is its heat treatment. In the following sections we would therefore like to give some brief details about this important stage in its manufacture.

### 1. Soft annealing

In most cases steel in the soft annealed condition is mainly used for machining and cold forming and provides the most favourable microstructure for hardening.

Soft annealing is the result of

- slowly heating the steel to its annealing temperature,
- keeping it for an hour or more at this temperature and
- then cooling it slowly at 10 to 20 °C/h (furnace cooling).

Annealing temperatures can be found in the material specification sheet for each steel. Where necessary the appropriate measures need to be taken to avoid decarburisation and scaling (e.g. packing in cast iron chips, protective film or similar).

### 2. Stress-relief annealing

Machining and forming the steel causes stresses additional to those already existing in the material. These additional stresses can give rise to large irregular changes in shape of the steel during subsequent heating to the hardening temperature. We therefore recommend that workpieces with irregular or complicated shapes are annealed for at least 2 hours at 480 °C to relieve these stresses before final machining and thus limit the amount of costly reworking of the finished tool. Final cooling should take place in a furnace for as long as possible.

### Note:

In the case of quenched and tempered steel the stress-relief annealing is carried out at 30 - 50 °C less than the last tempering temperature so as to avoid a reduction in hardness.

### *3. Hardening 3.1 Heating to the hardening temperature*

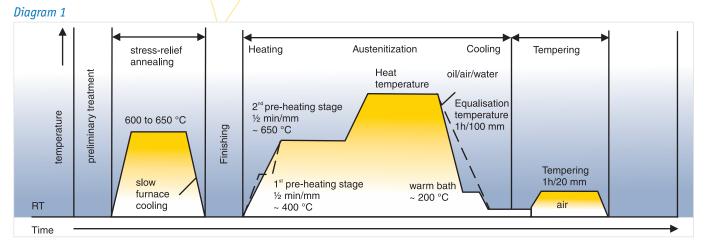
The workpieces are heated slowly to the hardening temperature in order to keep thermal stresses and distortion low. In the case of facilities that heat up quickly such as salt baths you are strongly recommended to split the heating up process into stages. The initial preheating stage generally goes up to about 400 °C (in air circulation furnaces). Further conventional heating stages are shown in the timetemperature-transformation diagrams below. The aim of this preheating is to achieve a uniform temperature over the whole cross section of the workpiece.

### 3.2 Austenisation

From the last preheating stage the workpiece is heated to a hardening temperature within the range given in the material specification sheets. After the workpiece has reached the hardening temperature over its whole cross section it is held at this temperature (with the exception of high speed steel tools). The time required for the hardening temperature to be reached throughout the section depends on the wall thickness of the workpiece.

Once the hardening temperature is achieved the tool must be held at this temperature irrespective of the wall thickness.

# Heat treatment

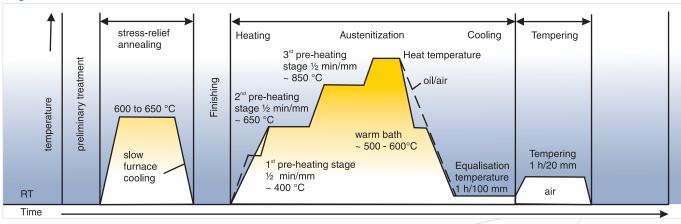

#### 3.3 Quenching

After austenisation the tools are cooled in the appropriate hardening medium The attainable hardness depends on what speed of cooling can be achieved from the hardening temperature. It is therefore influenced by the cooling medium and the size of the workpiece. On the other hand the speed of cooling should not be higher than is necessary to achieve the maximum hardness whilst keeping the thermal stresses due to cooling as small as possible. If the transformation behaviour of the steel allows, a temperature equalisation stage is incorporated at  $\approx$  550 °C. If this is possible it is detailed in the material specification sheet. After the parts are cooled to  $\approx$  100 °C, they are transferred directly into a furnace at a temperature of between 100 and 150 °C to prevent possible quenching cracks from developing if cooled to room temperature. Temperature equalisation in an equalisation furnace is often necessary, particularly with large tools, in order to achieve full transformation in the core before tempering.

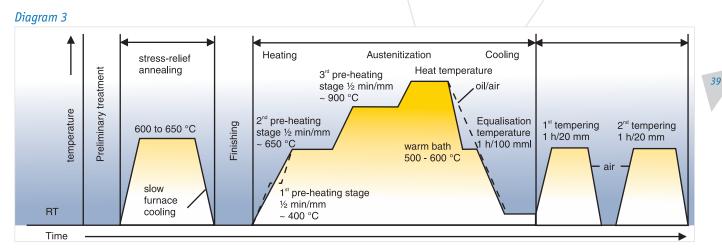
#### 4. Tempering

After quenching, the steel is brought to the specified hardness by tempering. The appropriate temperature for tempering can be estimated from the hardness-tempering temperature graph (see material specification sheet). Even if the maximum hardness is the same as the intended working hardness, the steel must still be tempered at between 180 and 220 °C. The respective curves apply only for the hardening temperatures given in the diagrams. However, there are a number of tool applications in which deviations from the usual hardening temperatures are advantageous. The hardness-tempering temperature curves cannot be used for these. Heating to the tempering temperature should take place slowly. The whole time in the tempering oven should be approx. 1 hour for every 20 mm wall thickness, with a minimum of 2 hours. Then follows cooling in air.

It is advantageous to temper at least twice in order to temper the martensite formed from the residual austenite during the first cooling from the tempering temperature. In the case of hardness-tempering curves with a secondary hardening maximum always select the highest tempering temperature in order to achieve the desired hardness.




Time-temperature-transformation diagram for the heat treatment of unalloyed and alloyed cold and hot work steels with hardening temperatures of up to 900 °C




# Heat treatment

### Diagram 2



Time-temperature-transformation diagram for the heat treatment of alloyed cold work steels with hardening temperatures over 900 °C



Time-temperature-transformation diagram for the heat treatment of hot work steels with hardening temperatures over 900 °C and for special treatment of e.g. 1.2379

# Welding

### 1. Problem

In order to achieve specific characteristics, for example high hardness, good wear resistance, good throughhardenability etc., steels for tool making are always incorporate a number of alloying elements. This inevitably leads to a substantial reduction in their weldability, especially if the carbon content is high (>0.5%). During cooling of the weld, when the temperature falls below a specific temperature (defined for the steel involved) the microstructure can change though the formation of martensite, i.e. the weld affected zone hardens and this can lead to the formation of stress cracks. In the light of this problem we recommend that the important fundamental advice outlined in section 3 is always observed.

#### 2. Welding process

Most repair welding in tool making is carried out using the TIG process or with covered stick electrodes. TIG welding is used to rectify small defects, whilst stick electrodes are more suitable for application to larger surfaces. The welding process selected has no influence on the pre and post heat treatments to be used, which must be carried out as stipulated in every case. Only when welding low alloy case hardening steels and when using covered electrodes is it possible to omit post-weld treatment, as cooling in these circumstances takes place relatively slowly and thus results in no seriously increased hardening.

#### 3. General advice

Please ensure you observe the following points:

#### 3.1

Prepare the surface appropriately before welding. For example, cracks should be ground open to form a U-shaped cross section. Grind away all visible traces of cracks.

### 3.2

In order to make the repair site as unnoticeable as possible (important for plastic mould tools) it is necessary to use a filler metal with a similar chemical composition to the parent metal. This requirement is also emphasised by the desirability of uniform hardness and internal stresses in the weld and parent material.

#### 3.3

Tool steels must always be preheated in order to counteract increased hardening and the risk of stress cracks.

### 3.4

In the case of quenched and tempered steels or hardened tools, the preheat temperature should be 30 - 50 °C below the last tempering temperature (protective atmosphere) in order to avoid reduction in hardness.

### 3.5

Use an electrode with as small a diameter or cross section as possible for the work.

### 3.6

For longer duration welding operations the preheat temperature must be maintained by the application of intermediate heat.

### 3.7

Larger applications should be welded in strips, which are joined afterwards in order to keep distortion as low as possible.

### 3.8

After welding the tools should be allowed to cool to no lower than 100 °C.

### 3.9

Annealed materials must be softannealed immediately afterwards. This involves heating quenched and tempered steel to a temperature if at all possible 30 - 50 °C below the last used tempering temperature (protective atmosphere) to prevent a reduction in strength.

# **ESCHMANN STAHL**

# Welding

### 4. The welding process

All welding operations consist of 3 stages:

- Preheating
- Welding with subsequent cooling (not below 100 °C)
- Immediate post-weld heat treatment

Recommended pre and post-treatment temperatures can be found in Table 1.

## Table 1:

Works name

Material No.

Heat treatment condition

Preheating temperature Reheating temperature

| Unalloyed steel            |               |                                  |              |              |
|----------------------------|---------------|----------------------------------|--------------|--------------|
| ES ULW 65                  | 1.1730        | annealed                         | 350 - 450 °C | 650 - 700 °C |
| Case hardening steels      |               |                                  |              |              |
| ES 100 K                   | 1.2162        | annealed                         | 400 - 450 °C | 680 - 710 °C |
|                            |               | quenched and tempered            | 160 - 200 °C | 160 - 200 °C |
| ES 106 K                   | 1.2764        | annealed                         | 400 - 450 °C | 620 - 650 °C |
|                            |               | quenched and tempered            | 160 - 200 °C | 160 - 200 °C |
| Quenched and tempered stee | els           |                                  |              |              |
| ES Aktuell                 | 1.2311        | quenched and tempered            | 350 - 480 °C | 480 °C       |
| ES Aktuell S               | 1.2312        | quenched and tempered            | 350 - 480 °C | 480 °C       |
| ES Aktuell 1000            | 1.2738        | quenched and tempered            | 350 - 480 °C | 480 °C       |
| ES Aktuell 1200            | Special alloy | quenched and tempered            | 350 - 480 °C | 480 °C       |
| Through-hardening steels   |               |                                  |              |              |
| ES 235 W                   | 1.2343        | annealed                         | 350 - 450 °C | 820 - 860 °C |
|                            |               | quenched and tempered            | 350 - 450 °C | 480 °C       |
| ES 245 W                   | 1.2344        | annealed                         | 350 - 450 °C | 820 - 860 °C |
|                            |               | quenched and tempered            | 350 - 450 °C | 480 °C       |
| ES 70 S                    | 1.2379        | annealed                         | 300 - 400 °C | 800 - 850 °C |
|                            |               | quenched and tempered            | 160 - 250 °C | 160 - 250 °C |
|                            |               | hardened, special heat treatment | 350 - 500 °C | 480 °C       |
| ES 50 SW                   | 1.2436        | annealed                         | 300 - 400 °C | 780 - 820 °C |
|                            |               | quenched and tempered            | 160 - 240 °C | 160 - 240 °C |
| ES 370 G                   | 1.2714        | annealed                         | 400 - 500 °C | 680 - 720 °C |
|                            |               | quenched and tempered            | 300 - 400 °C | 480 °C       |
| ES 275 K                   | 1.2767        | annealed                         | 300 - 400 °C | 620 - 650 °C |
|                            |               | quenched and tempered            | 160 - 300 °C | 160 - 300 °C |
| ES 60 S                    | 1.2842        | annealed                         | 300 - 400 °C | 680 - 720 °C |
|                            |               | quenched and tempered            | 160 - 240 °C | 160 - 300 °C |
| Corrosion resistant steels |               |                                  |              |              |
| ES 120 K                   | 1.2083        | annealed                         | 400 - 500 °C | 780 - 820 °C |
|                            |               | quenched and tempered            | 250 - 350 °C | 250 - 500 °C |
| ES Antikor                 | 1.2316        | quenched and tempered            | 400 - 500 °C | 500 - 550 °C |
| ES Antikor S               | 1.2085 mod.   | quenched and tempered            | 400 - 500 °C | 500 - 550 °C |
|                            |               |                                  |              |              |

# Polishing

### Polishing of tool steels

Different products require different grades of surface finish. Their quality is primarily dependent on the quality of the mould surface.

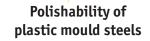
The factors influencing polishability are:

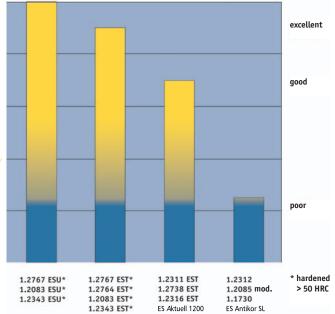
- Cleanliness factor
- Appropriate heat treatment, properly carried out
- Grade of the grinding or polishing materials

When considering the cleanliness factor, it is essential to consider the specific types of inclusions present in the steel. These inclusions can never be totally avoided. Hard, brittle oxides and silicates are detrimental as they are torn out of the steel during polishing and leave behind small pin-prick holes.

Non-metallic, low-hardness inclusions such as sulphides do not normally have any detrimental effect on polishability. However the low hardness of these sulphides compared with the steel matrix can give rise to hollows in highly polished mirrored finishes with the result that these steels cannot be used for making this type of mould (e.g. 1.2312 or 1.2085 mod.).

Modern deoxidisation processes and treating the steel melt under vacuum allow us nowadays to avoid detrimental inclusions to a large extent or to limit them to a size at which they do not cause any damage.


Our EST grades allow very good technical polishing.


For highly polished or mirrored finishes we recommend that ESR materials are used.

Heat treatment can affect polishability in a number of ways. The microstructure of over-carburised case hardening steel is not very suitable for polishing. It actually has no oxide particles under the surface. Variations or decarburisation or carburisation of the shallow surface zone caused by heat treatment can lead to variations in hardness at the surface and detrimentally effects on polishability.

Our quenched and tempered plastic mould steels, e.g. 1.2311 or 1.2738, strength approx. 1000 N/mm<sup>2</sup>, are not normally subject to further heat treatment. These steels in EST grade show good polishability in the assupplied condition.

If steel with a higher strength is used a better polished surface can be produced. Longer polishing times are required on harder steels to produce a high degree of uniformity.





#### Note:

Polishability in this case relates to quenched and tempered or hardened steels. Our EST and ESR grades further improve polishability. You may also see ESR referred to ESU elsewhere in other German steel industry literature.

# **ESCHMANN STAHL**

# Surface texturing

For technical and aesthetic reasons many plastic products are given a textured surface.

A wide range of surface textures can be achieved by photochemical etching of the tool surface.

Steel quality is largely determined by production methods. A high cleanliness factor with regard to oxides and sulphides, a uniform, fine microstructure and little segregation within the steel lead to a good final product.

ES tool steel meets all the prerequisites for attaining a good grain surface texture. The quality of the surface texture is also extremely dependent on the machined surface of the tool mould. Weld repair sites or residual eroded material can lead to defects in the grain texture.

This is where the know-how of graining experts is necessary to detect these defects before texturing begins. In many circumstances the graining process can then be suitably adapted to suppress the appearance of these defects in the surface texture.

Eschmann Textures International GmbH has particular expertise with all ES steel grades. The combination of experience of tool steel and etching techniques assures the best texture quality is achieved.



# Plastic mould steels

The development of plastics processing, which imposes increasing requirements on tool moulds, demands continuous improvements in material properties. The development of these properties is an integral part of the rapidly expanding plastics processing industry. Plastic moulds are subject to more than a million stress cycles over their long life, which means that excellent wear resistance is required in addition to high toughness.

The requirement for surface finish quality of the plastic components and the associated quality of the moulds with respect to polishability and suitability for graining necessitate a uniform (isotropic) microstructure over the whole ingot cross section.

EschmannStahl has been the leading producer of plastic mould steels for many years and has always been a pioneer in the introduction of new and improved steels.

### Product range:

|                            |              | N                 |      | <i>ci</i> . |         |      |            | , · | 0() |     |
|----------------------------|--------------|-------------------|------|-------------|---------|------|------------|-----|-----|-----|
| Works name                 | Material No. | Name              | _    |             | · · · · |      | typical vo |     | · · |     |
|                            |              |                   | С    | Si          | Mn      | S    | Cr         | Мо  | Ni  | V   |
| Mould frame steel          |              |                   |      | /           |         |      |            |     |     |     |
| ES ULW 65                  | 1.1730       | C 45 U            | 0.45 | 0.3         | 0.7     | -    | -          | -   | -   | -   |
| Case hardening steel       |              |                   |      |             |         |      |            |     |     |     |
| ES 100 K                   | 1.2162       | 21 MnCr 5         | 0.21 | 0.3         | 1.3     | -    | 1.2        | -   | -   | -   |
| ES 106 K                   | 1.2764       | X 19 NiCrMo 4     | 0.19 | 0.3         | 0.3     | -    | 1.3        | 0.2 | 4.1 | -   |
| Quenched and tempered ste  | els          |                   |      |             |         |      |            |     |     |     |
| ES Aktuell                 | 1.2311       | 40 CrMnMo 7       | 0.40 | 0.3         | 1.5     | -    | 1.9        | 0.2 | -   | -   |
| ES Aktuell S               | 1.2312       | 40 CrMnMo S 8-6   | 0.40 | 0.4         | 1.5     | 0.07 | 1.9        | 0.2 | -   | -   |
| ES Aktuell 1000            | 1.2738       | 40 CrMnNiMo 8-6-4 | 0.40 | 0.3         | 1.5     | -    | 2.0        | 0.2 | 1.0 | -   |
| ES Aktuell 1200            | Special      | alloy             | 0.25 | -           | 1.4     | -    | 1.3        | 0.5 | 1.0 | -   |
| ES Antikor                 | 1.2316       | X 38 CrMo 16      | 0.38 | 1.0         | 1.0     | -    | 16.0       | 1.2 | 1.0 | -   |
| ES Antikor S               | 1.2085 mod.  | X 33 CrS 16       | 0.30 | 0.50        | 1.0     | 0.1  | 16.0       | -   | 1.0 | -   |
| Corrosion resistant steels |              |                   |      |             |         |      |            |     |     |     |
| ES 120 K                   | 1.2083       | X 40 Cr 14        | 0.42 | 0.4         | 0.3     | -    | 13.0       | -   | -   | -   |
| ES Antikor                 | 1.2316       | X 38 CrMo 16      | 0.38 | 1.0         | 1.0     | -    | 16.0       | 1.2 | 1.0 | -   |
| ES Antikor S               | 1.2085 mod.  | X 33 CrS 16       | 0.33 | 1.0         | 1.0     | 0.1  | 16.0       | -   | 1.0 | -   |
| ES Antikor SL              | Special      | alloy             | 0.04 | -           | 1.2     | 0.12 | 13.0       | -   | -   | -   |
| Special steels             |              |                   |      |             |         |      |            |     |     |     |
| ES LB 100                  | -            | -                 | 0.40 | 0.3         | 1.0     | -    | 1.5        | 0.2 | -   | -   |
| Through-hardening steels   |              |                   |      |             |         |      |            |     |     |     |
| ES 235 W                   | 1.2343       | X 37 CrMoV 5-1    | 0.37 | 1.0         | 0.4     | -    | 5.3        | 1.3 | -   | 0.4 |
| ES 245 W                   | 1.2344       | X 40 CrM V 5-1    | 0.40 | 1.0         | 0.4     | -    | 5.3        | 1.4 | -   | 1.0 |
| ES 275 K                   | 1.2767       | 45 NiCrMo 16      | 0.45 | 0.3         | 0.3     | -    | 1.4        | 0.3 | 4.0 | -   |



# Schematic diagram of a plastic injection moulding tool



### Example: PVC moulding

| Тоо | l                       | Works name | Material No. | Hardness in HRC /              |
|-----|-------------------------|------------|--------------|--------------------------------|
|     |                         |            |              | Strength in N/mm <sup>2</sup>  |
| 1   | Centring plate          | ES ULW 65  | 1.1730       | approx. 650 N/mm <sup>2</sup>  |
| 2   | Sprue bushing           | ES 120 K   | 1.2083       | 54-56 HRC                      |
| 3   | Backing plate           | ES ULW 65  | 1.1730       | approx. 650 N/mm <sup>2</sup>  |
| 4   | Upper mould section     | ES Antikor | 1.2316       | approx. 1000 N/mm <sup>2</sup> |
| 5   | Guide column            | ES 60 S    | 1.2842       | 58-60 HRC                      |
| 6   | Lower mould section     | ES Antikor | 1.2316       | approx. 1000 N/mm <sup>2</sup> |
| 7   | Ejector pins            | ES 245 W   | 1.2344       | approx. 1500 N/mm²             |
| 8   | Ejector retaining plate | ES ULW 65  | 1.1730       | approx. 650 N/mm <sup>2</sup>  |
| 9   | Ejector base plate      | ES ULW 65  | 1.1730       | approx. 650 N/mm <sup>2</sup>  |
| 10  | Backing plate           | ES ULW 65  | 1.1730       | approx. 650 N/mm <sup>2</sup>  |

#### A tip on the selection of steel

As mould maintenance (repolishing, cleaning, replacement of worn parts) is a not inconsiderable part of the overall tool costs, the selection of the right mould steel can reduce costs substantially.

# Steel selection for plastics processing

# Example: PVC moulding

| Steel selection for plastics proce | essing          |               |                                             |
|------------------------------------|-----------------|---------------|---------------------------------------------|
| Description                        | Works name      | Material No.  | Strength / hardness (typical values)        |
| Case-hardening steel               | ES 100 K        | 1.2162        | Surface hardness 60 HRC                     |
|                                    |                 |               | Core strength 1000 - 1200 N/mm <sup>2</sup> |
|                                    | ES 106 K        | 1.2764        | Surface hardness 60 HRC                     |
|                                    |                 |               | Core strength 1200 - 1400 N/mm <sup>2</sup> |
| Quenched and tempered steels       | ES Aktuell      | 1.2311        | 950 - 1100 N/mm²                            |
|                                    | ES Aktuell S    | 1.2312        | 950 - 1100 N/mm²                            |
|                                    | ES Aktuell 1000 | 1.2738        | approx. 1000 N/mm <sup>2</sup>              |
|                                    | ES Aktuell 1200 | Special alloy | approx. 1100 N/mm <sup>2</sup>              |
|                                    | ES Antikor      | 1.2316        | approx. 1000 N/mm <sup>2</sup>              |
|                                    | ES LB 100       | Special alloy | approx. 1000 N/mm <sup>2</sup>              |
| Corrosion resistant steels         | ES 120 K        | 1.2083        | 50-55 HRC                                   |
|                                    | ES Antikor      | 1.2316        | approx. 1100 N/mm <sup>2</sup>              |
|                                    | ES Antikor S    | 1.2085 mod.   | approx. 1000 - 1200 N/mm <sup>2</sup>       |
|                                    | ES Antikor SL   | Special alloy |                                             |
| Through-hardening steels           | ES 245 W        | 1.2344        | 40-54 HRC                                   |
|                                    | ES 275 K        | 1.2767        | 50-56 HRC                                   |
|                                    | ES 50 S         | 1.2080        | 58-62 HRC                                   |
|                                    | ES 70 S         | 1.2379        | 58-62 HRC                                   |
|                                    | ES 60 S         | 1.2842        | 57 - 62 HRC                                 |

# Example: PVC moulding

## Selection of steel for supplementary mould tools (examples)

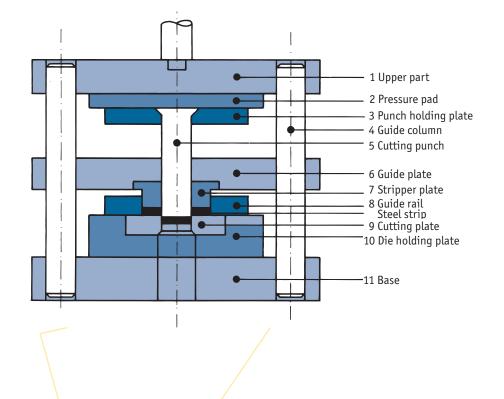
| Description     | Works name | Material No. | Strength / hardness (typical values) |
|-----------------|------------|--------------|--------------------------------------|
| Sprue bushing   | ES 120 K   | 1.2083       | approx. 56 HRC                       |
|                 | ES 70 S    | 1.2379       | approx. 60 HRC                       |
| Centring flange | ES ULW 65  | 1.1730       | approx. 650 N/mm <sup>2</sup>        |
| Clamping plate  | ES 50 S    | 1.2080       | approx. 60 HRC                       |
|                 | ES 60 S    | 1.2842       | approx. 60 HRC                       |
| Ejector         | ES 245 W   | 1.2344       | approx. 1500 N/mm²,                  |
|                 |            |              | nitrided if necessary                |
| Ejector plate   | ES ULW 65  | 1.1730       | approx. 650 N/mm <sup>2</sup>        |
| Guide column    | ES 60 S    | 1.2842       | approx. 60 HRC                       |
| Backing plate   | ES ULW 65  | 1.1730       | approx. 650 N/mm²                    |
|                 |            |              |                                      |



# Cold work steels

Cold work steels are generally used at working temperatures of under 200 °C . High hardness, adequate toughness and wear resistance characterise this group of steels. These materials are usually supplied in the soft-annealed condition and machined then hardened. Typical areas of application include stamping and cutting tools for dies and knives, tools for cold massive forming, punching and hobbing, for thread rolling dies, shearing knives etc. The particular requirements applying to cold work steels include the following:

- High wear resistance
- Adequate toughness
- Sufficient fatigue strength
- Ease of machinability
- Very good dimensional stability during heat treatment


Which of the above properties is most important depends on the particular application. EschmannStahl will be delighted to advise you on this.

## Product range:

| Works name | Material No. | Name           | (    | Chemical | compos | ition (ty | pical val | ues in % | )   |     |
|------------|--------------|----------------|------|----------|--------|-----------|-----------|----------|-----|-----|
|            |              |                | С    | Si       | Мn     | Cr        | Мо        | Ni       | V   | W   |
| ES ULW 65  | 1.1730       | C 45 U         | 0.45 | 0.3      | 0.7    | -         | -         | -        | -   | -   |
| ES 50 S    | 1.2080       | X 210 Cr 12    | 2.00 | 0.3      | 0.3    | 12.0      | _         | -        | _   | _   |
| ES 65 S    | 1.2363       | X 100 CrMoV 5  | 1.00 | 0.3      | 0.6    | 5.3       | 1.0       | -        | 0.2 | -   |
| ES 70 S    | 1.2379       | X 153 CrMoV 12 | 1.53 | 0.3      | 0.3    | 12.0      | 0.7       | _        | 0.9 | _   |
| ES 50 SW   | 1.2436       | X 210 CrW 12   | 2.10 | 0.3      | 0.3    | 12.0      | -         | -        | -   | 0.7 |
| ES 275 K   | 1.2767       | 45 NiCrMo 16   | 0.45 | 0.3      | 0.3    | 1.4       | 0.3       | 4.0      | -   | _   |
| ES 60 S    | 1.2842       | 90 MnCrV 8     | 0.90 | 0.3      | 2.0    | 0.4       | -         | -        | 0.1 | -   |



# Schematic diagram of a cutting tool



48

| Тоо | l                   | Works name   | Material No. | Hardness in HRC /              |
|-----|---------------------|--------------|--------------|--------------------------------|
|     |                     |              |              | Strength in N/mm <sup>2</sup>  |
| 1   | Upper part          | ES ULW 65    | 1.1730       | approx. 650 N/mm <sup>2</sup>  |
| 2   | Pressure pad        | ES 60 S      | 1.2842       | 58 – 60 HRC                    |
| 3   | Punch holding plate | ES Aktuell S | 1.2312*      | approx. 1000 N/mm <sup>2</sup> |
| 4   | Guide column        | ES 60 S      | 1.2842       | 56 – 58 HRC                    |
| 5   | Cutting punch       | ES 70 S      | 1.2379       | 58 – 62 HRC                    |
| 6   | Guide plate         | ES Aktuell S | 1.2312*      | approx. 1000 N/mm <sup>2</sup> |
| 7   | Stripper plate      | ES 60 S      | 1.2842       | 58 – 60 HRC                    |
| 8   | Guide rail          | ES 60 S      | 1.2842       | 58 – 60 HRC                    |
| 9   | Cutting plate       | ES 50 SW     | 1.2436       | 62 – 64 HRC                    |
| 10  | Die holding plate   | ES Aktuell S | 1.2312*      | approx. 1000 N/mm <sup>2</sup> |
| 11  | Base                | ES ULW 65    | 1.1730       | approx. 650 N/mm <sup>2</sup>  |

# **ESCHMANN STAHL**

# Selection of steel for cold work tools

### A tip on the selection of steel:

As the cost of the materials is normally less than 10% of the total manufacturing cost of a tool, selecting the optimum quality of the steel is absolutely necessary to eliminate any risk in the future.

The table below gives just a few examples of common steels to help you in the selection of the right material. The shape of the tool, its manufacture and the appropriate heat treatment all play a decisive role in determining the life of a tool.

## 1. Cutting tools

| 1.1. Steels for punches and dies     |                    |            |              |                  |
|--------------------------------------|--------------------|------------|--------------|------------------|
| Material                             | Material thickness | Works name | Material No. | Hardness in HRC  |
| to be cut                            | in mm              |            |              | (typical values) |
| Steel plate and strip,               | up to 3            | ES 50 S    | 1.2080       | 60 - 64          |
| Al and Al alloys,                    |                    | ES 50 SW   | 1.2436       | 60 - 64          |
| Cu and Cu alloys                     | up to 6            | ES 70 S    | 1.2379       | 58 - 62          |
| strength up to 600 N/mm <sup>2</sup> |                    | ES 60 S    | 1.2842       | 58 - 62          |
|                                      | over 12            | ES 275 K   | 1.2767       | 50 - 54          |
| Steel plate and strip                | up to 3            | ES 50 S    | 1.2080       | 58 - 62          |
| and metal alloys                     |                    | ES 50 SW   | 1.2436       | 56 - 60          |
| strength over 600 N/mm <sup>2</sup>  | up to 6            | ES 70 S    | 1.2379       | 56 - 60          |
|                                      | over 12            | ES 275 K   | 1.2767       | 50 - 56          |
| Transformer and dynamo plate         | up to 1            | ES 50 SW   | 1.2436       | 63 - 65          |
| and strip                            | up to 3            | ES 50 SW   | 1.2436       | 62 - 64          |
|                                      |                    | ES 50 S    | 1.2080       | 62 - 64          |
|                                      | up to 6            | ES 70 S    | 1.2379       | 60 - 62          |
| Austenitic steels                    | up to 3            | ES 50 S    | 1.2080       | 62 - 64          |
|                                      |                    | ES 50 SW   | 1.2436       | 62 - 64          |
|                                      | up to 6            | ES 70 S    | 1.2379       | 58 - 62          |
|                                      | over 12            | ES 275 K   | 1.2767       | 52 - 56          |
| Non-metallic materials               |                    | ES 50 S    | 1.2080       | 58 - 64          |
| such as leather, plastic,            |                    | ES 50 SW   | 1.2436       | 58 - 64          |
| wood, rubber, textiles,              |                    | ES 70 S    | 1.2379       | 58 - 64          |
| paper                                |                    | ES 60 S    | 1.2842       | 58 - 64          |
|                                      |                    |            |              |                  |

# Selection of steel for cold work tools

| 1.2. Steels for attachments |            |              |                               |
|-----------------------------|------------|--------------|-------------------------------|
| Material                    | Works name | Material No. | Hardness in HRC /             |
| to be cut                   |            |              | Strength in N/mm <sup>2</sup> |
| Thrust pad, pressure plate, | ES 60 S    | 1.2842       | 56-60 HRC                     |
| intermediate plate          | ES 275 K   | 1.2767       | 50-54 HRC                     |
| Stripper                    | ES 60 S    | 1.2842       | 58-60 HRC                     |
| Stripper plate              | ES ULW 65  | 1.1730       | approx. 650 N/mm <sup>2</sup> |
| Spring bolts                | ES 60 S    | 1.2842       | 58-62 HRC                     |
| Guide pin                   | ES 100 K   | 1.2162       | 58-60 HRC                     |
| Guide column                | ES 106 K   | 1.2764       | 58-60 HRC                     |
| Ejector plate               | ES 60 S    | 1.2842       | 56-60 HRC                     |
| Punch holding plate         | ES ULW 65  | 1.1730       | approx. 650 N/mm²             |
| Base plate                  |            |              |                               |
| Blank holder                | ES 70 S    | 1,2379       | 58-62 HRC                     |
|                             | ES 60 S    | 1.2842       | 58-62 HRC                     |

## 2. Shearing knives

| Knife type      | Thickness of<br>material to be cut | Works name | Material No. | Hardness in HRC |
|-----------------|------------------------------------|------------|--------------|-----------------|
| Shearing knives | up to 2 mm                         | ES 70      | 1.2379       | 58 - 62         |
| (longitudinal   |                                    | ES 50 SW   | 1.2436       | 58 - 62         |
| and round)      | up to 6 mm                         | ES 70 S    | 1.2379       | 58 - 60         |
|                 |                                    | ES 60 S    | 1.2842       | 56-60           |
|                 | over 10 mm                         | ES 275 K   | 1.2767       | 48 - 54         |
| Paper knives    | all thicknesses                    | ES 65 S    | 1.2363       | 56-60           |
|                 |                                    | ES 70 S    | 1.2379       | 58 - 62         |
|                 |                                    | ES 50 SW   | 1.2436       | 58 - 62         |
| Knives for      | all thicknesses                    | ES 65 S    | 1.2363       | 56-60           |
| plastics        |                                    | ES 70 S    | 1.2379       | 58 - 62         |
| processing      |                                    | ES 60 S    | 1.2842       | 56-60           |
| Knives for      | all thicknesses                    | ES 235 W   | 1.2343       | 54 - 56         |
| woodworking     |                                    | ES 65 S    | 1.2363       | 56-60           |



# Selection of steel for cold work tools

# 3. Steels for forming tools

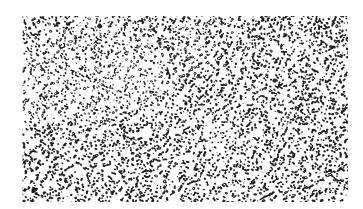
| Tools for producing screws,<br>nuts, rivets, bolts and balls | Tool                | Works name | Material No. | Hardness in HRC |
|--------------------------------------------------------------|---------------------|------------|--------------|-----------------|
|                                                              | Shearing knives     | ES 70 S    | 1.2379       | 58 - 62         |
|                                                              | Die inserts         | ES 70 S    | 1.2379       | 58 - 62         |
|                                                              | Reinforcing rings   | ES 235 W   | 1.2343       | 46 - 52         |
|                                                              |                     | ES 275 K   | 1.2767       | 48 - 52         |
|                                                              | Thread rolling dies | ES 70 S    | 1.2379       | 60 - 62         |
| Cold extrusion tools                                         | Die inserts,        | ES 70 S    | 1.2379       | 58 - 62         |
|                                                              | Punch               | ES 50 SW   | 1.2436       | 58 - 62         |
|                                                              |                     | ES 360 G   | 1.2714       | 54 - 56         |
|                                                              | Reinforcing rings   | ES 235 W   | 1.2343       | 46 - 52         |
|                                                              |                     | ES 360 G   | 1.2714       | 48 - 52         |
|                                                              |                     | ES 275 K   | 1.2767       | 48 - 52         |
|                                                              | Shearing bushes     | ES 65 S    | 1.2363       | 56 - 60         |
|                                                              |                     | ES 70 S    | 1.2379       | 58 - 62         |
| Coining tools,                                               | Coining tools       | ES 360 G   | 1.2714       | 54 - 56         |
| cutlery presses                                              |                     | ES 275 K   | 1.2767       | 48 - 54         |
| and hobbing punches                                          |                     | ES 60 S    | 1.2842       | 58 - 62         |
|                                                              | Cutlery presses     | ES 275 K   | 1.2767       | 52 - 55         |
|                                                              | Hobbing punches     | ES 70 S    | 1.2379       | 60 - 62         |
|                                                              |                     |            |              |                 |

# Hot work steels

Hot work steels are used in the manufacture of tools that are normally subject to prolonged temperatures in excess of 200 °C.

The main uses are as materials for die casting, extrusion and drop forging.

Recently hot work steels are also increasingly used in plastic mould making due to their universal material properties. The following properties are expected in particular from a hot work steel:


- Good high temperature strength and high temperature toughness
- Good high temperature wear resistance
- Good resistance to thermal shock
- Resistance to erosion by molten metal
- Good tempering resistance
- Good machinability
- High dimensional stability during heat treatment

Modern manufacturing methods – e.g. EST, ESR (electroslag remelting) or ESR + EST processes (ES Maximum 500) – ensure the above listed properties are always achieved with Eschmann hot work steels.

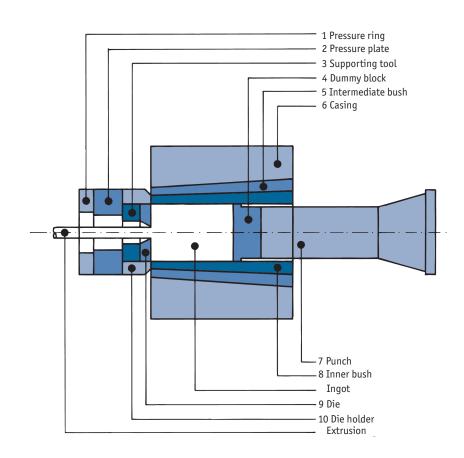
| Works name             | Material | Name           | Alloy c | ontent | in % |      |     |     |     |     |
|------------------------|----------|----------------|---------|--------|------|------|-----|-----|-----|-----|
|                        | No.      |                | C       | Si     | Mn   | S    | Cr  | Мо  | Ni  | V   |
| Low temperature tools  |          |                |         |        |      |      |     |     |     |     |
| ES Aktuell             | 1.2311   | 40 CrMnMo 7    | 0.40    | 0.3    | 1.5  | -    | 1.9 | 0.2 | -   | -   |
| ES Aktuell S           | 1.2312   | 40 CrMnMoS 8-6 | 0.40    | 0.4    | 1.5  | 0.07 | 1.9 | 0.2 | -   | -   |
| ES 370 G               | 1.2714   | 55 NiCrMoV 7   | 0.55    | 0.3    | 0.8  | -    | 1.1 | 0.5 | 1.7 | 0.1 |
| High temperature tools |          |                |         |        |      |      |     |     |     |     |
| ES 235 W               | 1.2343   | X 37 CrMoV 5-1 | 0.37    | 1.0    | 0.4  | -    | 5.3 | 1.3 | -   | 0.4 |
| ES Maximum 500         | 1,2343   | X 37 CrMoV 5-1 | 0.37    | 1.0    | 0.4  | -    | 5.3 | 1.3 | -   | 0.4 |
| ES 245 W               | 1.2344   | X 40 CrMoV 5-1 | 0.40    | 1.0    | 0.4  | -    | 5.3 | 1.4 | -   | 1.0 |
| ES 265 W               | 1.2367   | X 38 CrMoV 5-3 | 0.38    | 0.4    | 0.5  | -    | 5.0 | 3.0 | -   | 0.6 |
|                        |          |                |         |        |      |      |     |     |     |     |

ES hot work steels and special alloys are manufactured using the latest production techniques. Special smelting processes and structural treatments ensure an excellent standard of quality.

EST and ESR hot work steels are characterised by their uniform microstructure, which provides them with good isotropy, an important prerequisite for achieving a long service life for these high performance tools.



Microstructure of ES Maximum 500 in the annealed condition (500 x magnification)




# **Extrusion**

Extrusion is a technically important forming process for manufacturing semi-finished rods from metals.

The tools in extrusion presses are subject to high mechanical and thermal loads. The tool material is therefore required to have:

- Excellent high temperature strength with high wear resistance
- Tempering resistance with good toughness
- Tolerance to alternating thermal stresses



## Example: Aluminium alloy window profile

| Tool                | Works name | Material No. | Hardness in HRC /<br>Strength in N/mm <sup>2</sup> |
|---------------------|------------|--------------|----------------------------------------------------|
| 1 Pressure ring     | ES 370 G   | 1.2714       | 1200 - 1500 N/mm²                                  |
| 2 Pressure plate    | ES 370 G   | 1.2714       | 1200 - 1500 N/mm²                                  |
| 3 Supporting tool   | ES 370 G   | 1.2714       | 1100 - 1300 N/mm²                                  |
| 4 Dummy block       | ES 245 W   | 1.2344       | 1400 - 1700 N/mm²                                  |
| 5 Intermediate bush | ES 235 W   | 1.2343       | 1300 - 1500 N/mm²                                  |
| 6 Casing            | ES 235 W   | 1.2343       | 1000 - 1200 N/mm²                                  |
| 7 Punch             | ES 245 W   | 1.2344       | 1500 - 1700 N/mm²                                  |
| 8 Inner bush        | ES 245 W   | 1.2344       | 1300 - 1500 N/mm²                                  |
| 9 Die               | ES 245 W   | 1.2344       | 1400 - 1700 N/mm²                                  |
| 10 Die holder       | ES 235 W   | 1.2343       | 1300 - 1500 N/mm²                                  |

# Selection of steel for extrusion tools

### A tip on the selection of steel:

The right steel, a tried and tested design and the correct heat treatment are crucial to good tool performance.

| Thermal stress | Works name           | Material No.                         | Strength N/mm <sup>2</sup>                             |
|----------------|----------------------|--------------------------------------|--------------------------------------------------------|
|                |                      |                                      |                                                        |
|                |                      |                                      |                                                        |
| high           | ES 235 W             | 1.2343                               | 1300 - 1500                                            |
| high           | ES 265 W             | 1.2367                               | 1300 - 1500                                            |
| high           | ES 235 W             | 1.2343                               | 1100 - 1300                                            |
| high           | ES 235 W             | 1.2343                               | 1000 - 1200                                            |
|                | high<br>high<br>high | highES 235 WhighES 265 WhighES 235 W | highES 235 W1.2343highES 265 W1.2367highES 235 W1.2343 |



# Selection of steel for extrusion tools

| 2. Punches and solid dummy blocks               |            |              |                            |
|-------------------------------------------------|------------|--------------|----------------------------|
| Tool name                                       | Works name | Material No. | Strength N/mm <sup>2</sup> |
| Application                                     |            |              | <b>U</b> ,                 |
| Solid dummy blocks                              |            |              |                            |
| Primarily for light metal alloys                | ES 245 W   | 1.2344       | 1500 - 1800                |
| Hollow and solid punches                        |            |              |                            |
| for light and heavy metal alloys                | ES 370 G   | 1.2714       | 1500 - 1800                |
|                                                 | ES 235 W   | 1.2343       | 1500 - 1800                |
|                                                 | ES 245 W   | 1.2344       | 1500 - 1800                |
|                                                 | ES 265 W   | 1.2367       | 1500 - 1800                |
| for steel                                       | ES 245 W   | 1.2344       | 1500 - 1800                |
|                                                 |            |              |                            |
| 3. Ancillary tools                              |            |              |                            |
| Tool name                                       | Works name | Material No. | Strength N/mm <sup>2</sup> |
| Application                                     |            |              | <i>.</i> ,                 |
| Die holder                                      |            |              |                            |
| Generally determined by thermal stress          | ES 235 W   | 1.2343       | 1300 - 1500                |
| (similar to the selection of the die material)  | ES 370 G   | 1.2714       | 1300 - 1500                |
| Supporting tools                                |            |              |                            |
| Generally determined by thermal stress          | ES 235 W   | 1.2343       | 1200 - 1500                |
| (similar to the selection of the die material)  | ES 370 G   | 1.2714       | 1100 - 1300                |
| Pressure ring, pressure plate, pressure chamber |            |              |                            |
|                                                 | ES 370 G   | 1.2714       | 1200 - 1500                |
| Tool holder, tool clamp                         |            |              |                            |
|                                                 | ES 370 G   | 1.2714       | 1100 - 1400                |
| Mandrel holder                                  |            |              |                            |
|                                                 | ES 370 G   | 1.2714       | 1200 - 1400                |
| Upsetting ram, shearing punch, shearing mandrel |            |              |                            |
| Generally determined by thermal stress          | ES 235 W   | 1.2344       | 1300 - 1600                |
|                                                 | ES 265 W   | 1.2367       | 1300 - 1600                |

# Selection of steel for extrusion tools

# 4. Tube and rod extruder tools subject to wear

| Forged alloy                  | Application                          | Works name                 | Material No. | Strength N/mm <sup>2</sup> |
|-------------------------------|--------------------------------------|----------------------------|--------------|----------------------------|
| Dies, bridges, chamber and sp | ider tools (including spiders and in | serts for the above tools) |              |                            |
| Zinc and lead alloys          | for tubes, bars and                  | ES 235 W                   | 1.2343       | 1400 - 1600                |
|                               | sections                             | ES 245 W                   | 1.2344       | 1400 - 1600                |
| Light metal alloys            | for bars, sections, tubes            | ES 235 W                   | 1.2343       | 1400 - 1600                |
|                               | subject to normal stress             |                            |              |                            |
|                               | for special sections and tubes       | ES 245 W                   | 1.2344       | 1400 - 1600                |
|                               | subject to normal stress             |                            |              |                            |
|                               | subject to high stress               | ES 265 W                   | 1.2367       | 1400 - 1600                |
| Heavy metal alloys            | for sections, wires and tubes        | ES 265 W                   | 1.2367       | 1400 - 1600                |
| Steel                         | for sections                         | ES 235 W                   | 1.2343       | 1400 - 1600                |
|                               | and tubes                            | ES 245 W                   | 1.2344       | 1400 - 1600                |
| Extrusion mandrel and mandre  | el tip                               |                            |              |                            |
| Zinc and lead alloys          | for mandrels                         | ES 245 W                   | 1.2344       | 1500 - 1700                |
| Light metal alloys            | for mandrels of diameter             | ES 235 W                   | 1.2343       | 1500 - 1700                |
|                               | > 50 mm                              | ES 245 W                   | 1.2344       | 1500 - 1700                |
| Heavy metal alloys            | for water cooling                    | ES 245 W                   | 1.2344       | 1500 - 1700                |
|                               | for air cooling                      | ES 265 W                   | 1.2367       | 1500 - 1700                |
| Steel                         | general use                          | ES 245 W                   | 1.2344       | 1500 - 1700                |
| Dummy block and cleaning pa   | d                                    |                            |              |                            |
| Zinc and lead alloys          | general use                          | ES 370 G                   | 1.2714       | 1300 - 1500                |
| Light metal alloys            | general use                          | ES 235 W                   | 1.2343       | 1400 - 1600                |
|                               | general use                          | ES 245 W                   | 1.2344       | 1400 - 1600                |
|                               | high stress                          | ES 265 W                   | 1.2367       | 1400 - 1600                |
| Heavy metal use               | normal stress                        | ES 235 W                   | 1.2343       | 1400 - 1600                |
| Steel                         | general use                          | ES 245 W                   | 1.2344       | 1400 - 1600                |
|                               |                                      | ES 265 W                   | 1.2367       | 1400 - 1600                |

# ESCHMANNSTAHL

# Selection of steel for extrusion tools

### Our products and services Hot work steel stocks:

We maintain a wide-ranging special stock of steel to meet the requirements of the extrusion industry, which enables us to guarantee delivery at short notice.

### Technical advisory service:

We endeavour to maintain close contact with our customers. You can expect us to provide solutions to your problems and advice on the choice of the appropriate material and heat treatment.

| Works name             | Material | Name            | Alloy c | ontent | in % |      |     |     |     |     |
|------------------------|----------|-----------------|---------|--------|------|------|-----|-----|-----|-----|
|                        | No.      |                 | С       | Si     | Мn   | S    | Cr  | Мо  | Ni  | V   |
| Low temperature tools  |          |                 |         |        |      |      |     |     |     |     |
| ES Aktuell             | 1.2311   | 40 CrMnMo 7     | 0.40    | 0.3    | 1.5  | -    | 1.9 | 0.2 | -   | -   |
| ES Aktuell S           | 1.2312   | 40 CrMnMoS 8-6  | 0.40    | 0.4    | 1.5  | 0.07 | 1.9 | 0.2 | -   | -   |
| ES 370 G               | 1.2714   | 55 NiCrMoV 7    | 0.55    | 0.3    | 0.8  | -    | 1.1 | 0.5 | 1.7 | 0.1 |
| High temperature tools |          |                 |         |        |      |      |     |     |     |     |
| ES 235 W               | 1.2343   | X 37 CrMoV 5-1  | 0.37    | 1.0    | 0.4  | - /  | 5.3 | 1.3 | -   | 0.4 |
| ES 245 W               | 1.2344   | X 40 CrMoV 5-1  | 0.40    | 1.0    | 0.4  | 7    | 5.3 | 1.4 | -   | 1.0 |
| ES 265 W               | 1.2367   | X 38 CrMo V 5-3 | 0.38    | 0.4    | 0.5  | -    | 5.0 | 3.0 | -   | 0.6 |

57

# Die casting

### Warm work steel for die casting

Die casting is a mechanical casting process in which the molten metal is forced under pressure into the cavity between split halves of a metal mould. The process is ideal for producing large quantities of complicated parts from aluminium, zinc, magnesium, copper, lead and tin, the first named material being the most important.

### Typical die cast products:

- Aluminium: cylinder heads, oil tanks and gears
- Zinc: carburettors etc.
- Copper brass: taps, water valves etc

Die casting moulds have to last a long time; die casting foundry owners like long periods of continuous operation and prefer to avoid interruptions due maintenance work as much as possible.

The mould steel must therefore have the following characteristics:

- High thermal shock resistance
- Excellent high temperature strength
- Good tempering resistance
- Optimum high temperature toughness and high temperature wear resistance
- High thermal conductivity
- Minimal tendency to stick

The die casting mould steels we supply are manufactured using the following special processes:

#### ES EST

1 Ejector retaining plate

2 Ejector plate

3 Mould frame

4 Mould insert

5 Guide column

7 Mould frame

9 Mould insert

Water cooling

8 Guide bush Die cast part

6 Core 1

10 Core 2

ES ESR (electroslag remelting) ES ESR + EST (Maximum 500)

The special measures we employ from the production of the steel to the final structural treatment ensure that it meets the requirements of SEP 1614, VDG and DGM.

| Tool                      | Works name      | Material No. | Hardness in HRC /             |
|---------------------------|-----------------|--------------|-------------------------------|
|                           |                 |              | Strength in N/mm <sup>2</sup> |
| 1 Ejector retaining plate | ES ULW 65       | 1.1730       | approx. 650 N/mm²             |
| 2 Ejector plate           | ES ULW 65       | 1.1730       | approx. 650 N/mm²             |
| 3 Mould frame             | ES Aktuell 1000 | 1.2738       | approx. 1000 N/mm²            |
| 4 Mould insert            | ES 235 W/245 W  | 1.2343/44    | 44-46 HRC                     |
| 5 Guide column            | ES 60 S         | 1.2842       | 58-60 HRC                     |
| 6 Core 1                  | ES 235 W/245 W  | 1.2343/44    | 44-46 HRC                     |
| 7 Mould frame             | ES Aktuell 1000 | 1.2738       | approx. 1000 N/mm²            |
| 8 Guide bush              | ES 235 W/245 W  | 1.2343/44    | 46-48 HRC                     |
| 9 Mould insert            | ES 235 W/245 W  | 1.2343/44    | 46-48 HRC                     |
| 10 Core 2                 | ES 235 W/245 W  | 1.2343/44    | 44-46 HRC                     |



# Selection of steel for die casting machines and die casting moulds

### A tip on the selection of steel:

The diversity of applications often gives rise to questions about tool materials. Our technicians will be pleased to assist you.

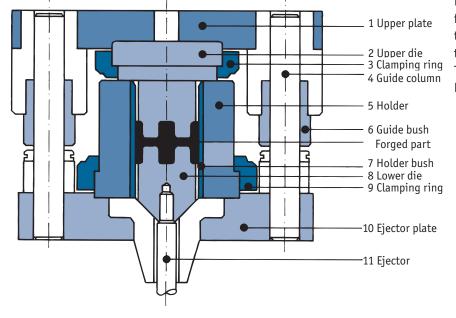
## 1. Die casting machines

| 1. Die euseing mae       | innes         |              |              |                                                      |
|--------------------------|---------------|--------------|--------------|------------------------------------------------------|
| Name of machine part     | Forged alloy  | Works name   | Material No. | Reference values for hardness in installed condition |
| Die casting process      |               |              |              | Strength N/mm <sup>2</sup>                           |
| Molten metal containers  |               |              |              |                                                      |
| Hot chamber process      | ZnSnPb alloys | ES 245 W     | 1.2344       | 900 -1100                                            |
| Casting chamber          |               |              |              |                                                      |
| Hot chamber process      | ZnSnPb alloys | ES 235 W     | 1.2343       | 1500 -1650                                           |
| Cold chamber process     | AlMg alloys   | ES 235 W     | 1.2343       | 1500 - 1650                                          |
|                          |               | ES 245 W     | 1.2344       | 1500 - 1650                                          |
|                          | Cu alloys     | ES 265 W     | 1.2367       | 1300 - 1500                                          |
| Casting plunger, counter | -             |              |              |                                                      |
| Hot chamber process      | ZnSnPb alloys | ES 235 W     | 1.2343       | 1400 -1550                                           |
| Cold chamber process     | AlMg alloys   | ES 235 W     | 1.2343       | 1400 -1550                                           |
|                          |               | ES 245 W     | 1.2344       | 1400 -1550                                           |
|                          | Cu alloys     | ES 265 W     | 1.2367       | 1200 -1400                                           |
| Nozzle, adapter, reducer | ý             |              | V            |                                                      |
|                          |               | ES 235 W     | 1.2343       | 800 - 1400                                           |
|                          |               | ES 245 W     | 1.2344       | 800 -1400                                            |
|                          | Mg alloys     | ES 235 W     | 1.2343       | 800 - 1400                                           |
|                          | 5 5           | ES 245 W     | 1.2344       | 800 -1400                                            |
| Cold chamber process     | AlMg alloys   | ES 235 W     | 1.2343       | 1400 -1550                                           |
|                          | 5 5           | ES 245 W     | 1.2344       | 1400 -1550                                           |
|                          | Cu alloys     | ES 265 W     | 1.2367       | 1300 - 1500                                          |
| 2. Die casting mou       | -             |              |              |                                                      |
| Z. Die Castilly lifu     | lus           |              |              |                                                      |
| Name of the mould part   | Forged alloy  | Works name   | Material No. | Reference values for hardnes                         |
|                          |               |              |              | in installed condition                               |
|                          |               |              |              | Strength N/mm <sup>2</sup>                           |
| Mould frame              |               | FS Aktuell S | 1 2312       | 950 -1100                                            |

| ES ULW 65      1.1730      approx. 650        Mould inserts      ZnSnPb alloys      ES 235 W      1.2343      1300 - 1500        Nozzle      AlMg alloys                       |               |               |                    |           | Suengui Ny IIIII |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------|--------------------|-----------|------------------|
| Mould inserts      ZnSnPb alloys      ES 235 W      1.2343      1300 - 1500        Nozzle      AlMg alloys                                                                     | Mould frame   |               | ES Aktuell S       | 1.2312    | 950 -1100        |
| Nozzle      AlMg alloys        Sprue pins      ES 235 W/ ES 245 W      1.2343/44      1400 - 1800        Valve cores      Cu alloys      ES 265 W      1.2367      1300 - 1500 |               |               | ES ULW 65          | 1.1730    | approx. 650      |
| Sprue pins      ES 235 W/ ES 245 W      1.2343/44      1400 - 1800        Valve cores      Cu alloys      ES 265 W      1.2367      1300 - 1500                                | Mould inserts | ZnSnPb alloys | ES 235 W           | 1.2343    | 1300 -1500       |
| Cores      ES 235 W/ ES 245 W      1.2343/44      1400 - 1800        Valve cores      Cu alloys      ES 265 W      1.2367      1300 - 1500                                     | Nozzle        | AlMg alloys   |                    |           |                  |
| Valve cores      Cu alloys      ES 265 W      1.2367      1300 - 1500                                                                                                          | Sprue pins    |               |                    |           |                  |
|                                                                                                                                                                                | Cores         |               | ES 235 W/ ES 245 W | 1.2343/44 | 1400 -1800       |
| Ejector ES 235 W/ ES 245 W 1.2343/44 1400 - 1650                                                                                                                               | Valve cores   | Cu alloys     | ES 265 W           | 1.2367    | 1300 - 1500      |
|                                                                                                                                                                                | Ejector       |               | ES 235 W/ ES 245 W | 1.2343/44 | 1400 -1650       |

# Drop forging

Drop forging with hammers and presses is forming with a tool in two parts moving in opposite directions – the dies. This process has become very important in manufacturing because it offers the following advantages and possibilities:


- Optimum utilisation of the forged material
- Low machining allowances
- Narrow tolerances
- Homogeneous and pore-free
  microstructure

The type of stresses on the dies give rise to the following requirements for the swage material:

- High hardness, toughness and fatigue strength
- High yield strength and elongation
- Excellent high temperature strength
- Tolerance of short-term temperature fluctuations
- Highest wear resistance

During forging under the action of a hammer a die requires great toughness to withstand the impact loading. Tough NiCrMoV alloys have proved themselves in use for some time now. The properties of these alloys have been systematically improved by modern smelting, forming and heat treatment processes.

The primary factor with regard to presses and forging machines is the temperature load on the tool caused by the long cycle time of the forged item in contact with the die. High alloyed CrMo steels are used in these circumstances, in particular for the advantages arising from their tempering resistance, thermal conductivity and high temperature wear resistance. These steels are also available in EST and ESR grades.



| Tool            | Works name         | Material No.  | Hardness in HRC /              |
|-----------------|--------------------|---------------|--------------------------------|
|                 |                    |               | Strength in N/mm <sup>2</sup>  |
| 1 Upper plate   | ES ULW 65          | 1.1730        | approx. 65 N/mm²               |
| 2 Upper die     | ES 235 W/ ES 265 W | 1.2343/1.2367 | 1400-1600 N/mm²                |
| 3 Clamping ring | ES Aktuell         | 1.2311        | approx. 1000 N/mm <sup>2</sup> |
| 4 Guide column  | ES 60 S            | 1.2842        | 58 - 60 HRC                    |
| 5 Holder        | ES Aktuell         | 1.2311        | approx. 1000 N/mm²             |
| 6 Guide bush    | ES Aktuell         | 1.2311        | approx. 1000 N/mm²             |
| 7 Holder bush   | ES 245 W           | 1.2344        | 1400-1500 N/mm²                |
| 8 Lower die     | ES 235 W/ ES 265 W | 1.2343/1.2367 | 1400-1600 N/mm²                |
| 9 Clamping ring | ES Aktuell         | 1.2311        | approx. 1000 N/mm²             |
| 10 Lower plate  | ES ULW 65          | 1.1730        | approx. 650 N/mm²              |
| 11 Ejector      | ES 245 W           | 1.2344        | 1400-1500 N/mm <sup>2</sup>    |



# Selection of steel for drop forging

### A tip on the selection of steel:

It is often service life that determines whether or not the forming process is economic. EschmannStahl can provide you with the appropriate steels for your particular area of application.

| Forging method  | Tool              | Works name | Material No. | Reference values<br>in installed condition<br>Strength N/mm² |
|-----------------|-------------------|------------|--------------|--------------------------------------------------------------|
| Hammer          | Complete die      | ES 370 G   | 1.2714       | 1100 - 1600                                                  |
|                 | Female die        | ES 370 G   | 1.2714       | 1000 - 1400                                                  |
|                 | Die insert        | ES 370 G   | 1.2714       | 1300 - 1800                                                  |
|                 |                   | ES 245 W   | 1.2344       | 1300 - 1800                                                  |
|                 |                   | ES 265 W   | 1.2367       | 1300 - 1600                                                  |
|                 | Impact rim        | ES 370 G   | 1.2714       | 1600 - 1800                                                  |
| Press           | Complete die      | ES 370 G   | 1.2714       | 1200 - 1700                                                  |
|                 |                   | ES 235 W   | 1.2343       | 1300 - 1700                                                  |
|                 |                   | ES 245 W   | 1.2344       | 1300 - 1700                                                  |
|                 |                   | ES 265 W   | 1.2367       | 1300 - 1700                                                  |
|                 | Female die        | ES 370 G   | 1.2714       | 1000 - 1400                                                  |
|                 | Die insert        | ES 235 W   | 1.2343       | 1300 - 1800                                                  |
|                 |                   | ES 245 W   | 1.2344       | 1300 - 1800                                                  |
|                 |                   | ES 265 W   | 1.2367       | 1300 - 1800                                                  |
|                 | Impression insert | ES 265 W   | 1.2367       | 1500 - 1800                                                  |
| Horizontal      | Mandrel           | ES 265 W   | 1.2367       | 1500 - 1800                                                  |
| forging machine | Die               | ES 245 W   | 1.2344       | 1300 - 1800                                                  |
|                 |                   |            |              |                                                              |

# Hardness conversion table

| Tensile<br>strength | Brinell<br>hard- | Vickers<br>hard- | Rock-<br>well | Tensile<br>strength | Brinell<br>hard- | Vickers<br>hard- | Rock-<br>well | Tensile<br>strength | Brinell<br>hard- | Vickers<br>hard- | Rock-<br>well |
|---------------------|------------------|------------------|---------------|---------------------|------------------|------------------|---------------|---------------------|------------------|------------------|---------------|
| V/mm²               | ness             | ness             | hard-         | N/mm²               | ness             | ness             | hard-         | N/mm <sup>2</sup>   | ness             | ness             | hard-         |
|                     |                  | HV               | ness          |                     |                  | HV               | ness          |                     |                  | HV               | ness          |
|                     |                  | $(F \ge 98 N)$   | HRC           |                     |                  | (F≥981           | ·             |                     |                  | $(F \ge 98 N)$   |               |
| 255                 | 76.0             | 80               |               | 915                 | 271              | 285              | 27.8          |                     |                  | 680              | 59.2          |
| 270                 | 80.7             | 85               |               | 930                 | 276              | 290              | 28.5          |                     |                  | 690              | 59.7          |
| 285                 | 85.5             | 90               |               | 950                 | 280              | 295              | 29.2          |                     |                  | 700              | 60.1          |
| 305                 | 90.2             | 95               |               | 965                 | 285              | 300              | 29.8          |                     |                  | 720              | 61.0          |
| 320                 | 95.0             | 100              |               | 995                 | 295              | 310              | 31.0          |                     |                  | 740              | 61.8          |
| 335                 | 99.8             | 105              |               | 1030                | 304              | 320              | 32.2          |                     |                  | 760              | 62.5          |
| 350                 | 105              | 110              |               | 1060                | 314              | 330              | 33.3          |                     |                  | 780              | 63.3          |
| 370                 | 109              | 115              |               | 1095                | 323              | 340              | 34.4          |                     |                  | 800              | 64.0          |
| 385                 | 114              | 120              |               | 1125                | 333              | 350              | 35.5          |                     |                  | 820              | 64.7          |
| 400                 | 119              | 125              |               | 1155                | 342              | 360              | 36.6          |                     |                  | 840              | 65.3          |
| 415                 | 124              | 130              |               | 1190                | 352              | 370              | 37.7          |                     |                  | 860              | 65.9          |
| 430                 | 128              | 135              |               | 1220                | 361              | 380              | 38.8          |                     |                  | 880              | 66.4          |
| 450<br>465          | 133              | 140              |               | 1255                | 371              | 390              | 39.8          |                     |                  | 900              | 67.0          |
| 465                 | 138              | 145              |               | 1290                | 380              | 400              | 40.8          |                     |                  | 920              | 67.5          |
| 480                 | 143              | 150              |               | 1320                | 390              | 410              | 41.8          |                     |                  | 940              | 68.0          |
| 495<br>-10          | 147              | 155              |               | 1350                | 399              | 420              | 42.7          |                     |                  |                  |               |
| 510                 | 152              | 160              |               | 1385                | 409              | 430              | 43.6          |                     |                  |                  |               |
| 530                 | 156              | 165              |               | 1420                | 418              | 440              | 44.5          |                     |                  |                  |               |
| 545<br>560          | 162<br>166       | 170<br>175       |               | 1455<br>1485        | 428<br>437       | 450<br>460       | 45.3<br>46.1  |                     |                  |                  |               |
| 500<br>575          | 171              | 175              |               | 1485                | 437              | 400              | 46.9          |                     |                  |                  |               |
| 595                 | 171              | 180              |               | 1520                | (456)            | 470              | 40.9          |                     |                  |                  |               |
| 595<br>510          | 170              | 185              |               | 1595                | (456)            | 480              | 47.7          |                     |                  |                  |               |
| 525                 | 181              | 190              |               | 1630                | (400)            | 500              | 48.4          |                     |                  |                  |               |
| 540                 | 190              | 200              |               | 1665                | (485)            | 510              | 49.8          |                     |                  |                  |               |
| 540<br>560          | 195              | 205              |               | 1700                | (494)            | 520              | 50.5          |                     |                  |                  |               |
| 500<br>675          | 195              | 210              |               | 1740                | (504)            | 530              | 51.1          |                     |                  |                  |               |
| 690                 | 204              | 215              |               | 1775                | (513)            | 540              | 51.7          |                     |                  |                  |               |
| 705                 | 209              | 220              |               | 1810                | (523)            | 550              | 52.3          |                     |                  |                  |               |
| 720                 | 214              | 225              |               | 1845                | (532)            | 560              | 53.0          |                     |                  |                  |               |
| 740                 | 219              | 230              |               | 1880                | (542)            | 570              | 53.6          |                     |                  |                  |               |
| 755                 | 223              | 235              |               | 1920                | (551)            | 580              | 54.1          |                     |                  |                  |               |
| 770                 | 228              | 240              | 20.3          | 1955                | (561)            | 590              | 54.7          |                     |                  |                  |               |
| 785                 | 233              | 245              | 21.3          | 1995                | (570)            | 600              | 55.2          |                     |                  |                  |               |
| 300                 | 238              | 250              | 22.2          | 2030                | (580)            | 610              | 55.7          |                     |                  |                  |               |
| 320                 | 242              | 255              | 23.1          | 2070                | (589)            | 620              | 56.3          |                     |                  |                  |               |
| 835                 | 247              | 260              | 24.0          | 2105                | (599)            | 630              | 56.8          |                     |                  |                  |               |
| 850                 | 257              | 265              | 24.8          | 2145                | (608)            | 640              | 57.3          |                     |                  |                  |               |
| 865                 | 257              | 270              | 25.6          | 2180                | (618)            | 650              | 57.8          |                     |                  |                  |               |
| 880                 | 261              | 275              | 26.4          |                     | · · /            | 660              | 58.3          |                     |                  |                  |               |
| 900                 | 266              | 280              | 27.1          |                     |                  | 670              | 58.8          |                     |                  |                  |               |